Molecular characterization of 11q deletions points to a pathogenic role of the ATM gene in mantle cell lymphoma. (57/671)

Deletions involving the long arm of chromosome 11 (11q) have been recently found as recurrent chromosome aberrations in mantle cell lymphoma (MCL). In the current study, the incidence and molecular extent of 11q deletions were analyzed in a series of 81 MCL by fluorescence in situ hybridization with probes from a contiguous set of yeast artificial chromosomes (YACs). Loss of chromosome 11 material was observed in 37 of 81 cases (46%). The minimally deleted segment comprised YAC 801e11 containing the ATM gene. To further narrow the minimal region of loss, P1-derived artificial chromosomes mapping to the critical region were isolated and used as probes in cases without aberrations detectable with YACs. This allowed the identification of an ATM deletion that was beyond the resolution of YAC probes. The identification of a minimally deleted segment affecting ATM suggests a pathogenic role of ATM as a tumor suppressor gene in MCL.  (+info)

Two murine and human homologs of mab-21, a cell fate determination gene involved in Caenorhabditis elegans neural development. (58/671)

We report the cloning and genetic characterization of one human and two murine homologs of the mab-21 cell fate specification gene. mab-21 participates in the formation of sensory organs in the male nematode tail, and is essential for other developmental functions elsewhere in the Caenorhabditis elegans embryo. The expanding mab-21 gene family, which is strikingly conserved in evolution, includes two putative Drosophila members. The two mammalian genes, encoding 41 kDa nuclear basic proteins, are expressed in partially overlapping territories in the embryonic brain, eye and limbs, as well as in neural crest derivatives. Recent genetic data implicating mab-21 as a downstream target of TGF-beta signaling, together with the distribution of mab-21 transcripts in the mouse embryo, propose these novel genes as relevant factors in various aspects of vertebrate neural development.  (+info)

Analysis of a DNase I hypersensitive site located -20.9 kb upstream of the CFTR gene. (59/671)

The cystic fibrosis transmembrane conductance regulator gene (CFTR) shows a tightly regulated pattern of expression with spatial and temporal control. The regulatory elements achieving this appear to lie outside the basal promoter of the gene. We previously identified DNase I hypersensitive sites (DHSs) at -79.5 kb and -20.5 kb with respect to the CFTR translational start site which may contain important regulatory elements. We have now investigated further the DHS at -20.5 kb to evaluate its potential function in the regulation of CFTR expression. Finer mapping revealed that the DHS lies at -20.9 kb. Deletion of the DHS from a 310-kb yeast artificial chromosome (YAC) containing the human CFTR gene has shown that this site may be responsible for about 60% of wild-type levels of transcription from the YAC transgene when expressed in Caco2 cells. DNase I footprinting showed several regions of protection within the -20.9 kb region with nuclear extracts from Caco2 cells, but not with extracts from lymphoblastoid cells, which do not show the DHS. Matches to several transcription factor-binding sites were found, but supershift analysis with specific antibodies did not identify the transcription factors involved. Two purine/pyrimidine mirror repeat elements within the -20.9-kb DHS were shown not to adopt non-B-DNA conformations. Thus, we provide evidence for a role for the -20.9 kb DHS in the transcriptional regulation of the CFTR gene, although the mechanisms mediating this effect remain unclear.  (+info)

Functional analysis of the DXPas34 locus, a 3' regulator of Xist expression. (60/671)

X inactivation in female mammals is controlled by a key locus on the X chromosome, the X-inactivation center (Xic). The Xic controls the initiation and propagation of inactivation in cis. It also ensures that the correct number of X chromosomes undergo inactivation (counting) and determines which X chromosome becomes inactivated (choice). The Xist gene maps to the Xic region and is essential for the initiation of X inactivation in cis. Regulatory elements of X inactivation have been proposed to lie 3' to Xist. One such element, lying 15 kb downstream of Xist, is the DXPas34 locus, which was first identified as a result of its hypermethylation on the active X chromosome and the correlation of its methylation level with allelism at the X-controlling element (Xce), a locus known to affect choice. In this study, we have tested the potential function of the DXPas34 locus in Xist regulation and X-inactivation initiation by deleting it in the context of large Xist-containing yeast artificial chromosome transgenes. Deletion of DXPas34 eliminates both Xist expression and antisense transcription present in this region in undifferentiated ES cells. It also leads to nonrandom inactivation of the deleted transgene upon differentiation. DXPas34 thus appears to be a critical regulator of Xist activity and X inactivation. The expression pattern of DXPas34 during early embryonic development, which we report here, further suggests that it could be implicated in the regulation of imprinted Xist expression.  (+info)

A high-resolution physical map of human chromosome 21p using yeast artificial chromosomes. (61/671)

The short arm of human chromosome 21 (21p) contains many different types of repetitive sequences and is highly homologous to the short arms of other acrocentric chromosomes. Owing to its repetitive nature and the lack of chromosome 21p-specific molecular markers, most physical maps of chromosome 21 exclude this region. We constructed a physical map of chromosome 21p using sequence tagged site (STS) content mapping of yeast artificial chromosomes (YACs). To this end, 39 STSs located on the short arm or near the centromere of chromosome 21 were constructed, including four polymorphic simple tandem repeats (STRs) and two expressed sequence tags (ESTs). Thirty YACs were selected from the St. Louis YAC library, the chromosome 21-enriched ICRF YAC library, and the CEPH YAC and megaYAC libraries. These were assembled in a YAC contig map ranging from the centromere to the rDNA gene cluster at 21p12. The total size of the region covered by YACs is estimated between 2.9 and 5 Mb. The integrity of the YAC contig was confirmed by restriction enzyme fingerprinting and fluorescence in situ hybridization (FISH). One gap with an estimated size of 400 kb remained near the telomeric end of the contig. This YAC contig map of the short arm of human chromosome 21 constitutes a basic framework for further structural and functional studies of chromosome 21p.  (+info)

A 7.5 Mb sequence-ready PAC contig and gene expression map of human chromosome 11p13-p14.1. (62/671)

The region p13 of the short arm of human chromosome 11 has been studied intensely during the search for genes involved in the etiology of the Wilms' tumor, aniridia, genitourinary abnormalities, mental retardation (WAGR) syndrome, and related conditions. The gene map for this region is far from being complete, however, strengthening the need for additional gene identification efforts. We describe the extension of an existing contig map with P1-derived artificial chromosomes (PACs) to cover 7.5 Mb of 11p13-14.1. The extended sequence-ready contig was established by end probe walking and fingerprinting and consists of 201 PAC clones. Utilizing bins defined by overlapping PACs, we generated a detailed gene map containing 20 genes as well as 22 anonymous ESTs which have been identified by searching the RH databases. RH maps and our established gene map show global correlation, but the limits of resolution of the current RH panels are evident at this scale. Initial expression studies on the novel genes have been performed by Northern blot analyses. To extend these expression profiles, corresponding mouse cDNA clones were identified by database search and employed for Northern blot analyses and RNA in situ hybridizations to mouse embryo sections. Genomic sequencing of clones along a minimal tiling path through the contig is currently under way and will facilitate these expression studies by in silico gene identification approaches.  (+info)

Induction and characterization of Ph1 wheat mutants. (63/671)

The cloning of genes for complex traits in polyploid plants that possess large genomes, such as hexaploid wheat, requires an efficient strategy. We present here one such strategy focusing on the homologous pairing suppressor (Ph1) locus of wheat. This locus has been shown to affect both premeiotic and meiotic processes, possibly suggesting a complex control. The strategy combined the identification of lines carrying specific deletions using multiplex PCR screening of fast-neutron irradiated wheat populations with the approach of physically mapping the region in the rice genome equivalent to the deletion to reveal its gene content. As a result, we have located the Ph1 factor controlling the euploid-like level of homologous chromosome pairing to the region between two loci (Xrgc846 and Xpsr150A). These loci are located within 400 kb of each other in the rice genome. By sequencing this region of the rice genome, it should now be possible to define the nature of this factor.  (+info)

The Mla (powdery mildew) resistance cluster is associated with three NBS-LRR gene families and suppressed recombination within a 240-kb DNA interval on chromosome 5S (1HS) of barley. (64/671)

Powdery mildew of barley, caused by Erysiphe graminis f. sp. hordei, is a model system for investigating the mechanism of gene-for-gene interaction between large-genome cereals and obligate-fungal pathogens. A large number of loci that confer resistance to this disease are located on the short arm of chromosome 5(1H). The Mla resistance-gene cluster is positioned near the telomeric end of this chromosome arm. AFLP-, RAPD-, and RFLP-derived markers were used to saturate the Mla region in a high-resolution recombinant population segregating for the (Mla6 + Mla14) and (Mla13 + Ml-Ru3) resistance specificities. These tightly linked genetic markers were used to identify and develop a physical contig of YAC and BAC clones spanning the Mla cluster. Three distinct NBS-LRR resistance-gene homologue (RGH) families were revealed via computational analysis of low-pass and BAC-end sequence data derived from Mla-spanning clones. Genetic and physical mapping delimited the Mla-associated, NBS-LRR gene families to a 240-kb interval. Recombination within the RGH families was at least 10-fold less frequent than between markers directly adjacent to the Mla cluster.  (+info)