Olfactory receptor-gene clusters, genomic-inversion polymorphisms, and common chromosome rearrangements. (33/1638)

The olfactory receptor (OR)-gene superfamily is the largest in the mammalian genome. Several of the human OR genes appear in clusters with > or = 10 members located on almost all human chromosomes, and some chromosomes contain more than one cluster. We demonstrate, by experimental and in silico data, that unequal crossovers between two OR gene clusters in 8p are responsible for the formation of three recurrent chromosome macrorearrangements and a submicroscopic inversion polymorphism. The first two macrorearrangements are the inverted duplication of 8p, inv dup(8p), which is associated with a distinct phenotype, and a supernumerary marker chromosome, +der(8)(8p23.1pter), which is also a recurrent rearrangement and is associated with minor anomalies. We demonstrate that it is the reciprocal of the inv dup(8p). The third macrorearrangment is a recurrent 8p23 interstitial deletion associated with heart defect. Since inv dup(8p)s originate consistently in maternal meiosis, we investigated the maternal chromosomes 8 in eight mothers of subjects with inv dup(8p) and in the mother of one subject with +der(8), by means of probes included between the two 8p-OR gene clusters. All the mothers were heterozygous for an 8p submicroscopic inversion that was delimited by the 8p-OR gene clusters and was present, in heterozygous state, in 26% of a population of European descent. Thus, inversion heterozygosity may cause susceptibility to unequal recombination, leading to the formation of the inv dup(8p) or to its reciprocal product, the +der(8p). After the Yp inversion polymorphism, which is the preferential background for the PRKX/PRKY translocation in XX males and XY females, the OR-8p inversion is the second genomic polymorphism that confers susceptibility to the formation of common chromosome rearrangements. Accordingly, it may be possible to develop a profile of the individual risk of having progeny with chromosome rearrangements.  (+info)

Comparative sequence analysis of colinear barley and rice bacterial artificial chromosomes. (34/1638)

Colinearity of a large region from barley (Hordeum vulgare) chromosome 5H and rice (Oryza sativa) chromosome 3 has been demonstrated by mapping of several common restriction fragment-length polymorphism clones on both regions. One of these clones, WG644, was hybridized to rice and barley bacterial artificial chromosome (BAC) libraries to select homologous clones. One BAC from each species with the largest overlapping segment was selected by fingerprinting and blot hybridization with three additional restriction fragment-length polymorphism clones. The complete barley BAC 635P2 and a 50-kb segment of the rice BAC 36I5 were completely sequenced. A comparison of the rice and barley DNA sequences revealed the presence of four conserved regions, containing four predicted genes. The four genes are in the same orientation in rice, but the second gene is in inverted orientation in barley. The fourth gene is duplicated in tandem in barley but not in rice. Comparison of the homeologous barley and rice sequences assisted the gene identification process and helped determine individual gene structures. General gene structure (exon number, size, and location) was largely conserved between rice and barley and to a lesser extent with homologous genes in Arabidopsis. Colinearity of these four genes is not conserved in Arabidopsis compared with the two grass species. Extensive similarity was not found between the rice and barley sequences other than within the exons of the structural genes, and short stretches of homology in the promoters and 3' untranslated regions. The larger distances between the first three genes in barley compared with rice are explained by the insertion of different transposable retroelements.  (+info)

Point mutation of bacterial artificial chromosomes by ET recombination. (35/1638)

Bacterial artificial chromosomes (BACs) offer many advantages for functional studies of large eukaryotic genes. To utilize the potential applications of BACs optimally, new approaches that allow rapid and precise engineering of these large molecules are required. Here, we describe a simple and flexible two-step approach based on ET recombination, which permits point mutations to be introduced into BACs without leaving any other residual change in the recombinant product. Introduction of other modifications, such as small insertions or deletions, is equally feasible. The use of ET recombination to achieve site-directed mutagenesis opens access to a powerful use of BACs and is extensible to DNA molecules of any size in Escherichia coli, including the E. coli chromosome.  (+info)

The mouse dystrophin enhancer is regulated by MyoD, E-box-binding factors, and by the serum response factor. (36/1638)

In vivo studies in the mouse have revealed that the muscle promoter of the mouse dystrophin gene can target the right ventricle of the heart only, suggesting the need for other regulatory elements to target the skeletal muscle as well as other compartments of the heart. In this study we report the identification of the mouse dystrophin gene enhancer that is located approximately 8.5 kilobases downstream from the mouse dystrophin gene muscle promoter. The enhancer was tested in myogenic G8, H9-C2, and nonmyogenic 3T3 cell lines and is mostly active in G8 myotubes. Sequence analysis of the mouse dystrophin gene enhancer revealed the presence of four E-boxes numbered E1-E4, a putative mef-2 binding site, and a serum response element. Site-directed mutagenesis studies have shown that E-boxes 1, 2, and 3 as well as the serum response element are required for enhancer activity. Gel shift analysis revealed two binding activities at binding sites E1 and E3 which were specific to myotubes, and supershift assays confirmed that myoD binds at both these sites. Our study also shows that werum response factor binds the serum response element but in myoblasts and fibroblasts only, suggesting that serum response factor may repress enhancer function.  (+info)

Assembly of large genomic segments in artificial chromosomes by homologous recombination in Escherichia coli. (37/1638)

We developed a method for the reconstruction of a 100 kb DNA fragment into a bacterial artificial chromosome (BAC). The procedure makes use of iterative rounds of homologous recombination in Escherichia coli. Smaller, overlapping fragments of cloned DNA, such as cosmid clones, are required. They are transferred first into a temperature-sensitive replicon and then into the BAC of choice. We demonstrated the usefulness of this procedure by assembling a 90 kb genomic segment into an E.coli-STREPTOMYCES: artificial chromosome (ESAC). Using this procedure, ESACs are easy to handle and remarkably more stable than the starting cosmids.  (+info)

A bacterial artificial chromosome library of Lotus japonicus constructed in an Agrobacterium tumefaciens-transformable vector. (38/1638)

We constructed a BAC library of the model legume Lotus japonicus with a 6-to 7-fold genome coverage. We used vector PCLD04541, which allows direct plant transformation by BACs. The average insert size is 94 kb. Clones were stable in Escherichia coli and Agrobacterium tumefaciens.  (+info)

Isolation and characterization of EMILIN-2, a new component of the growing EMILINs family and a member of the EMI domain-containing superfamily. (39/1638)

EMILIN (elastin microfibril interfase located Protein) is an elastic fiber-associated glycoprotein consisting of a self-interacting globular C1q domain at the C terminus, a short collagenous stalk, an extended region of potential coiled-coil structure, and an N-terminal cysteine-rich domain (EMI domain). Using the globular C1q domain as a bait in the yeast two-hybrid system, we have isolated a cDNA encoding a novel protein. Determination of the entire primary structure demonstrated that this EMILIN-binding polypeptide is highly homologous to EMILIN. The domain organization is superimposable, one important difference being a proline-rich (41%) segment of 56 residues between the potential coiled-coil region and the collagenous domain absent in EMILIN. The entire gene (localized on chromosome 18p11.3) was isolated from a BAC clone, and it is structurally almost identical to that of EMILIN (8 exons, 7 introns with identical phases at the exon/intron boundaries) but much larger (about 40 versus 8 kilobases) than that of EMILIN. Given these findings we propose to name the novel protein EMILIN-2 and the prototype member of this family EMILIN-1 (formerly EMILIN). The mRNA expression of EMILIN-2 is more restricted compared with that of EMILIN-1; highest levels are present in fetal heart and adult lung, whereas, differently from EMILIN-1, adult aorta, small intestine, and appendix show very low expression, and adult uterus and fetal kidney are negative. Finally, the EMILIN-2 protein is secreted extracellularly by in vitro-grown cells, and in accordance with the partial coexpression in fetal and adult tissues, the two proteins shown extensive but not absolute immunocolocalization in vitro.  (+info)

Characterization of a cluster of human high/ultrahigh sulfur keratin-associated protein genes embedded in the type I keratin gene domain on chromosome 17q12-21. (40/1638)

Low stringency screening of a human P1 artificial chromosome library using a human hair keratin-associated protein (hKAP1.1A) gene probe resulted in the isolation of six P1 artificial chromosome clones. End sequencing and EMBO/GenBank(TM) data base analysis showed these clones to be contained in four previously sequenced human bacterial artificial chromosome clones present on chromosome 17q12-21 and arrayed into two large contigs of 290 and 225 kilobase pairs (kb) in size. A fifth, partially sequenced human bacterial artificial chromosome clone data base sequence overlapped and closed both of these contigs. One end of this 600-kb cluster harbored six gene loci for previously described human type I hair keratin genes. The other end of this cluster contained the human type I cytokeratin K20 and K12 gene loci. The center of the cluster, starting 35 kb downstream of the hHa3-I hair keratin gene, contained 37 genes for high/ultrahigh sulfur hair keratin-associated proteins (KAPs), which could be divided into a total of 7 KAP multigene families based on amino acid homology comparisons with previously identified sheep, mouse, and rabbit KAPs. To date, 26 human KAP cDNA clones have been isolated through screening of an arrayed human scalp cDNA library by means of specific 3'-noncoding region polymerase chain reaction probes derived from the identified KAP gene sequences. This screening also yielded four additional cDNA sequences whose genes were not present on this gene cluster but belonged to specific KAP gene families present on this contig. Hair follicle in situ hybridization data for single members of five different KAP multigene families all showed localization of the respective mRNAs to the upper cortex of the hair shaft.  (+info)