Common fragile sites nested at the interfaces of early and late-replicating chromosome bands: cis acting components of the G2/M checkpoint? (49/223)

Common fragile sites (CFS) are evolutionary conserved loci where damage appears recurrently upon treatments perturbing DNA synthesis. Although long studied, the mechanisms underlying CFS fragility are still incompletely understood and CFS function is unknown. We have mapped most of them at the junction of chromosomal bands replicating at different times in S phase, indicating that specific replication programs take place at CFS. In good agreement with this finding, we obtained results suggesting that CFS remain incompletely replicated up to late G(2), even in cells that went unperturbed through S phase. The recent demonstration that the function of ATR and its downstream targets are crucial to CFS stability may thereby indicate that mitotic onset is delayed until completion of their replication. Altogether, available results now suggest that CFS constitute integral "cis" components of the G(2)-M checkpoint.  (+info)

AtMND1 is required for homologous pairing during meiosis in Arabidopsis. (50/223)

BACKGROUND: Pairing of homologous chromosomes at meiosis is an important requirement for recombination and balanced chromosome segregation among the products of meiotic division. Recombination is initiated by double strand breaks (DSBs) made by Spo11 followed by interaction of DSB sites with a homologous chromosome. This interaction requires the strand exchange proteins Rad51 and Dmc1 that bind to single stranded regions created by resection of ends at the site of DSBs and promote interactions with uncut DNA on the homologous partner. Recombination is also considered to be dependent on factors that stabilize interactions between homologous chromosomes. In budding yeast Hop2 and Mnd1 act as a complex to promote homologous pairing and recombination in conjunction with Rad51 and Dmc1. RESULTS: We have analyzed the function of the Arabidopsis orthologue of the budding yeast MND1 gene (AtMND1). Loss of AtMND1 did not affect normal vegetative development but caused fragmentation and missegregation of chromosomes in male and female meiosis, formation of inviable gametes, and sterility. Analysis of the Atmnd1 Atspo11-1 double mutant indicated that chromosome fragmentation in Atmnd1 was suppressed by loss of Atspo11-1. Fluorescence in situ hybridization (FISH) analysis showed that homologous pairing failed to occur and homologues remained apart throughout meiosis. AtMND1 showed strong expression in meiocytes as revealed by RNA in situs. CONCLUSION: We conclude that AtMND1 is required for homologous pairing and is likely to play a role in the repair of DNA double strand breaks during meiosis in Arabidopsis, thus showing conservation of function with that of MND1 during meiosis in yeast.  (+info)

Genome-wide replication profiles of S-phase checkpoint mutants reveal fragile sites in yeast. (51/223)

The S-phase checkpoint kinases Mec1 and Rad53 in the budding yeast, Saccharomyces cerevisiae, are activated in response to replication stress that induces replication fork arrest. In the absence of a functional S-phase checkpoint, stalled replication forks collapse and give rise to chromosome breakage. In an attempt to better understand replication dynamics in S-phase checkpoint mutants, we developed a replication origin array for budding yeast that contains 424 of 432 previously identified potential origin regions. As expected, mec1-1 and rad53-1 mutants failed to inhibit late origin activation. Surprisingly however, 17 early-firing regions were not replicated efficiently in these mutants. This was not due to a lack of initiation, but rather to problems during elongation, as replication forks arrested in close proximity to these origins, resulting in the accumulation of small replication intermediates and eventual replication fork collapse. Importantly, these regions were not only prone to chromosome breakage in the presence of exogenous stress but also in its absence, similar to fragile sites in the human genome.  (+info)

A novel approach to simultaneously scan genes at fragile sites. (52/223)

BACKGROUND: Fragile sites are regions of the genome sensitive to replication stress and to exposure to environmental carcinogens. The two most commonly expressed fragile sites FRA3B and FRA16D host the histidine triad (FHIT) and WW domain containing oxidoreductase (WWOX) genes respectively. There is growing evidence that both genes contribute to cancer development and they are frequently altered by allelic and homozygous deletions in a variety of tumors. Their status is linked to prognosis in several malignancies and they are thought to be involved in early tumorigenesis. The loci for FHIT and WWOX both span over a megabase but the genes encode for small transcripts. Thus the screening of intragenic deletion can be difficult and has relied on loss of heterozygosity LOH assays, or genomic arrays. METHODS: Multiplex ligation dependent probe amplification MLPA, allows for the detection of deletions/duplications and relative quantification of up to 40 specific probes in a single assay. A FHIT/WWOX MLPA assay was designed, applied and validated in five esophageal squamous cell carcinoma ESCC, cell lines established in South Africa where this cancer is of high prevalence. Sixteen probes covered all FHIT exons and 7 probes covered WWOX. RESULTS: Both homozygous and hemizygous deletions were detected in FHIT, in four of the cell lines with a preferential deletion of exons 5 and 4. Chromosome 3 short arm was present in normal copy number indicating that deletions were site specific. In contrast WWOX was not altered in any cell lines. RT-PCR expression pattern paralleled the pattern of deletions. Ten primary ESCC tumor specimens were subsequently screened with this assay. FHIT exon deletions were found in four of them. CONCLUSION: This method offers an alternative to loss of heterozygosity studies. Simultaneous scanning of FHIT and WWOX exons in the context of early tumorigenesis and tumor progression, may help clarify the mechanistic events related to cancer development which are not revealed by immuno histochemistry assays. The presence of site specific deletions of FHIT in these cell lines and primary tumors support its possible role in South African ESCC and justifies a wider screening.  (+info)

Common fragile sites are conserved features of human and mouse chromosomes and relate to large active genes. (53/223)

Common fragile sites (CFSs) are seen as chromosomal gaps and breaks brought about by inhibition of replication, and it is thought that they cluster with tumor breakpoints. This study presents a comprehensive analysis using conventional and molecular cytogenetic mapping of CFSs and their expression frequencies in two mouse strains, BALB/c and C57BL/6, and in human probands. Here we show that induced mouse CFSs relate to sites of spontaneous gaps and breaks and that CFS expression levels in chromosome bands are conserved between the two mouse strains and between syntenic mouse and human DNA segments. Furthermore, four additional mouse CFSs were found to be homologous to human CFSs on the molecular cytogenetic level (Fra2D-FRA2G, Fra4C2-FRA9E, Fra6A3.1-FRA7G, and Fra6B1-FRA7H), increasing the number of such CFSs already described in the literature to eight. Contrary to previous reports, DNA helix flexibility is not increased in the 15 human and eight mouse CFSs molecularly defined so far, compared to large nonfragile control regions. Our findings suggest that the mechanisms that provoke instability at CFSs are evolutionarily conserved. The role that large transcriptionally active genes may play in CFS expression is discussed.  (+info)

Correlated fragile site expression allows the identification of candidate fragile genes involved in immunity and associated with carcinogenesis. (54/223)

BACKGROUND: Common fragile sites (cfs) are specific regions in the human genome that are particularly prone to genomic instability under conditions of replicative stress. Several investigations support the view that common fragile sites play a role in carcinogenesis. We discuss a genome-wide approach based on graph theory and Gene Ontology vocabulary for the functional characterization of common fragile sites and for the identification of genes that contribute to tumour cell biology. RESULTS: Common fragile sites were assembled in a network based on a simple measure of correlation among common fragile site patterns of expression. By applying robust measurements to capture in quantitative terms the non triviality of the network, we identified several topological features clearly indicating departure from the Erdos-Renyi random graph model. The most important outcome was the presence of an unexpected large connected component far below the percolation threshold. Most of the best characterized common fragile sites belonged to this connected component. By filtering this connected component with Gene Ontology, statistically significant shared functional features were detected. Common fragile sites were found to be enriched for genes associated to the immune response and to mechanisms involved in tumour progression such as extracellular space remodeling and angiogenesis. Moreover we showed how the internal organization of the graph in communities and even in very simple subgraphs can be a starting point for the identification of new factors of instability at common fragile sites. CONCLUSION: We developed a computational method addressing the fundamental issue of studying the functional content of common fragile sites. Our analysis integrated two different approaches. First, data on common fragile site expression were analyzed in a complex networks framework. Second, outcomes of the network statistical description served as sources for the functional annotation of genes at common fragile sites by means of the Gene Ontology vocabulary. Our results support the hypothesis that fragile sites serve a function; we propose that fragility is linked to a coordinated regulation of fragile genes expression.  (+info)

Is mammalian chromosomal evolution driven by regions of genome fragility? (55/223)

BACKGROUND: A fundamental question in comparative genomics concerns the identification of mechanisms that underpin chromosomal change. In an attempt to shed light on the dynamics of mammalian genome evolution, we analyzed the distribution of syntenic blocks, evolutionary breakpoint regions, and evolutionary breakpoints taken from public databases available for seven eutherian species (mouse, rat, cattle, dog, pig, cat, and horse) and the chicken, and examined these for correspondence with human fragile sites and tandem repeats. RESULTS: Our results confirm previous investigations that showed the presence of chromosomal regions in the human genome that have been repeatedly used as illustrated by a high breakpoint accumulation in certain chromosomes and chromosomal bands. We show, however, that there is a striking correspondence between fragile site location, the positions of evolutionary breakpoints, and the distribution of tandem repeats throughout the human genome, which similarly reflect a non-uniform pattern of occurrence. CONCLUSION: These observations provide further evidence that certain chromosomal regions in the human genome have been repeatedly used in the evolutionary process. As a consequence, the genome is a composite of fragile regions prone to reorganization that have been conserved in different lineages, and genomic tracts that do not exhibit the same levels of evolutionary plasticity.  (+info)

Increased common fragile site expression, cell proliferation defects, and apoptosis following conditional inactivation of mouse Hus1 in primary cultured cells. (56/223)

Targeted disruption of the mouse Hus1 cell cycle checkpoint gene results in embryonic lethality and proliferative arrest in cultured cells. To investigate the essential functions of Hus1, we developed a system for the regulated inactivation of mouse Hus1 in primary fibroblasts. Inactivation of a loxP site-flanked conditional Hus1 allele by using a cre-expressing adenovirus resulted in reduced cell doubling, cell cycle alterations, and increased apoptosis. These phenotypes were associated with a significantly increased frequency of gross chromosomal abnormalities and an S-phase-specific accumulation of phosphorylated histone H2AX, an indicator of double-stranded DNA breaks. To determine whether these chromosomal abnormalities occurred randomly or at specific genomic regions, we assessed the stability of common fragile sites, chromosomal loci that are prone to breakage in cells undergoing replication stress. Hus1 was found to be essential for fragile site stability, because spontaneous chromosomal abnormalities occurred preferentially at common fragile sites upon conditional Hus1 inactivation. Although p53 levels increased after Hus1 loss, deletion of p53 failed to rescue the cell-doubling defect or increased apoptosis in conditional Hus1 knockout cells. In summary, we propose that Hus1 loss leads to chromosomal instability during DNA replication, triggering increased apoptosis and impaired proliferation through p53-independent mechanisms.  (+info)