Localisation of aphidicolin-induced break points in Holstein-Friesian cattle (Bos taurus) using RBG-banding. (25/223)

Fragile sites (FS) seem to play a role in genome instability and may be involved in karyotype evolution and chromosome aberrations. The majority of common fragile sites are induced by aphidicolin. Aphidicolin was used at two different concentrations (0.15 and 0.30 microM) to study the occurrence of FS in the cattle karyotype. In this paper, a map of aphidicolin induced break points and fragile sites in cattle chromosomes was constructed. The statistical analysis indicated that any band with three or more breaks was significantly damaged (P<0.05). According to this result, 30 of the 72 different break points observed were scored as fragile sites. The Pearson correlation test showed a positive association between chromosome length and the number of fragile sites (r=0.54). On the contrary, 21 FS were identified on negative R bands while 9 FS were located on positive R bands.  (+info)

ATR regulates fragile site stability. (26/223)

Conditions that partially inhibit DNA replication induce expression of common fragile sites. These sites form gaps and breaks on metaphase chromosomes and are deleted and rearranged in many tumors. Yet, the mechanism of fragile site expression has been elusive. We demonstrate that the replication checkpoint kinase ATR, but not ATM, is critical for maintenance of fragile site stability. ATR deficiency results in fragile site expression with and without addition of replication inhibitors. Thus, we propose that fragile sites are unreplicated chromosomal regions resulting from stalled forks that escape the ATR replication checkpoint. These findings have important implications for understanding both the mechanism of fragile site instability and the consequences of stalled replication in mammalian cells.  (+info)

Human chromosome 7: DNA sequence and biology. (27/223)

DNA sequence and annotation of the entire human chromosome 7, encompassing nearly 158 million nucleotides of DNA and 1917 gene structures, are presented. To generate a higher order description, additional structural features such as imprinted genes, fragile sites, and segmental duplications were integrated at the level of the DNA sequence with medical genetic data, including 440 chromosome rearrangement breakpoints associated with disease. This approach enabled the discovery of candidate genes for developmental diseases including autism.  (+info)

Fragile X premutation in women with sporadic premature ovarian failure in Slovenia. (28/223)

BACKGROUND: Fragile X premutation carriers are at increased risk of premature ovarian failure (POF), which is usually defined as menopause before the age of 40 years. METHODS: We evaluated 83 women with sporadic premature ovarian failure, treated at the Department of Obstetrics and Gynaecology, University Medical Centre, Ljubljana, between 1991 and 2001. There was no family history of mental retardation in any of the patients. They were phenotypically normal and had normal female karyotype (46,XX), without a past history of pelvic surgery, chemotherapy or autoimmune diseases. RESULTS: The premutation in the FRAXA locus was found in four of the women screened (4.8%; 95% confidence interval 1.9-11.7). This prevalence (1 in 21) was statistically significantly higher than expected in the female Caucasian population. CONCLUSION: In this study we have confirmed an important association between FRAXA premutation and the pathogenesis of POF. This result has practical implications for genetic counselling and fertility treatment.  (+info)

Increased genetic instability of the common fragile site at 3p14 after integration of exogenous DNA. (29/223)

We determined previously that the selectable marker pSV2neo is preferentially inserted into chromosomal fragile sites in human x hamster hybrid cells in the presence of an agent (aphidicolin) that induces fragile-site expression. In contrast, cells transfected without fragile-site induction showed an essentially random integration pattern. To determine whether the integration of marker DNA at fragile sites affects the frequency of fragile-site expression, the parental hybrid and three transfectants (two with pSV2neo integrated at the fragile site at 3p14.2 [FRA3B] and specific hamster fragile sites [chromosome 1, bands q26-31, or mar2, bands q11-13] and one with pSV2neo integrated at sites that are not fragile sites) were treated with aphidicolin. After 24 h the two cell lines with plasmid integration at FRA3B showed structural rearrangements at that site; these rearrangements accounted for 43%-67% of the total deletions and translocations observed. Structural rearrangements were not observed in the parental cell line. After 5 d aphidicolin treatment, the observed excess in frequency of structural rearrangements at FRA3B in the cell lines with pSV2neo integration at 3p14 over that in the two lines without FRA3B integration was less dramatic, but nonetheless significant. Fluorescent in situ hybridization (FISH) analysis of these cells, using a biotin-labeled pSV2neo probe, showed results consistent with the gross rearrangements detected cytogenetically in the lines with FRA3B integration; however, the pSV2neo sequences were frequently deleted concomitantly with translocations.(ABSTRACT TRUNCATED AT 250 WORDS)  (+info)

WWOX, the common chromosomal fragile site, FRA16D, cancer gene. (30/223)

Gross chromosomal rearrangements and aneuploidy are among the most common somatic genomic abnormalities that occur during cancer initiation and progression, in particular in human solid tumor carcinogenesis. The loss of large chromosomal regions as consequence of gross rearrangements (e.g. deletions, monosomies, unbalanced translocations and mitotic recombination) have been traditionally associated with the existence of tumor suppressor genes within the areas affected by the loss of genetic material. The long arm of chromosome 16 was identified as being frequently associated with structural abnormalities in multiple neoplasias, that led us to focus attention on the detailed genetic dissection of this region resulting in the cloning of the putative tumor suppressor gene, WWOX (WW domain containing Oxidoreductase). Interestingly, the WWOX gene resides in the very same region as that of the common chromosomal fragile site 16D (FRA16D). The WWOX gene encodes a protein that contains two WW domains, involved in protein-protein interactions, and a short chain dehydrogenase (SDR) domain, possibly involved in sex-steroid metabolism. We have identified the WWOX WW domain ligand as the PPXY motif confirming the biochemical activity of this domain. WWOX normally resides in the Golgi and we will demonstrate that Golgi localization requires an intact SDR. Inactivation of the WWOX gene during tumorigenesis can occur by homozygous deletions and possibly mutation, however, aberrantly spliced forms of WWOX mRNA have been observed even when one allele is still intact. The aberrantly spliced mRNAs have deletions of the exons that encode the SDR and these WWOX protein isoforms display abnormal intracellular localization to the nucleus possibly functioning as dominant negative inhibitors of full length WWOX. Thus, generation of aberrant transcripts of WWOX may represent a novel mechanism to functionally inactivate WWOX without genomic alteration of the remaining allele. In this article we will review the cloning and identification of WWOX as the target of FRA16D. In addition, we will discuss the possible biochemical functions of WWOX and present evidence that ectopic WWOX expression inhibits tumor growth.  (+info)

A palindrome-mediated mechanism distinguishes translocations involving LCR-B of chromosome 22q11.2. (31/223)

Two known recurrent constitutional translocations, t(11;22) and t(17;22), as well as a non-recurrent t(4;22), display derivative chromosomes that have joined to a common site within the low copy repeat B (LCR-B) region of 22q11.2. This breakpoint is located between two AT-rich inverted repeats that form a nearly perfect palindrome. Breakpoints within the 11q23, 17q11 and 4q35 partner chromosomes also fall near the center of palindromic sequences. In the present work the breakpoints of a fourth translocation involving LCR-B, a balanced ependymoma-associated t(1;22), were characterized not only to localize this junction relative to known genes, but also to further understand the mechanism underlying these rearrangements. FISH mapping was used to localize the 22q11.2 breakpoint to LCR-B and the 1p21 breakpoint to single BAC clones. STS mapping narrowed the 1p21.2 breakpoint to a 1990 bp AT-rich region, and junction fragments were amplified by nested PCR. Junction fragment-derived sequence indicates that the 1p21.2 breakpoint splits a 278 nt palindrome capable of forming stem-loop secondary structure. In contrast, the 1p21.2 reference genomic sequence from clones in the database does not exhibit this configuration, suggesting a predisposition for regional genomic instability perhaps etiologic for this rearrangement. Given its similarity to known chromosomal fragile site (FRA) sequences, this polymorphic 1p21.2 sequence may represent one of the FRA1 loci. Comparative analysis of the secondary structure of sequences surrounding translocation breakpoints that involve LCR-B with those not involving this region indicate a unique ability of the former to form stem-loop structures. The relative likelihood of forming these configurations appears to be related to the rate of translocation occurrence. Further analysis suggests that constitutional translocations in general occur between sequences of similar melting temperature and propensity for secondary structure.  (+info)

Fragile site orthologs FHIT/FRA3B and Fhit/Fra14A2: evolutionarily conserved but highly recombinogenic. (32/223)

Common fragile sites are regions that show elevated susceptibility to DNA damage, leading to alterations that can contribute to cancer development. FRA3B, located at chromosome region 3p14.2, is the most frequently expressed human common fragile site, and allelic losses at FRA3B have been observed in many types of cancer. The FHIT gene, encompassing the FRA3B region, is a tumor-suppressor gene. To identify the features of FHIT/FRA3B that might contribute to fragility, sequences of the human FHIT and the flanking PTPRG gene were compared with those of murine Fhit and Ptprg. Human and mouse orthologous genes, FHIT and Fhit, are more highly conserved through evolution than PTPRG/Ptprg and yet contain more sequence elements that are exquisitely sensitive to genomic rearrangements, such as high-flexibility regions and long interspersed nuclear element 1s, suggesting that common fragile sites serve a function. The conserved AT-rich high-flexibility regions are the most characteristic of common fragile sites.  (+info)