(1/6089) Sexual dimorphism in white campion: complex control of carpel number is revealed by y chromosome deletions.

Sexual dimorphism in the dioecious plant white campion (Silene latifolia = Melandrium album) is under the control of two main regions on the Y chromosome. One such region, encoding the gynoecium-suppressing function (GSF), is responsible for the arrest of carpel initiation in male flowers. To generate chromosomal deletions, we used pollen irradiation in male plants to produce hermaphroditic mutants (bsx mutants) in which carpel development was restored. The mutants resulted from alterations in at least two GSF chromosomal regions, one autosomal and one located on the distal half of the (p)-arm of the Y chromosome. The two mutations affected carpel development independently, each mutation showing incomplete penetrance and variegation, albeit at significantly different levels. During successive meiotic generations, a progressive increase in penetrance and a reduction in variegation levels were observed and quantified at the level of the Y-linked GSF (GSF-Y). Possible mechanisms are proposed to explain the behavior of the bsx mutations: epigenetic regulation or/and second-site mutation of modifier genes. In addition, studies on the inheritance of the hermaphroditic trait showed that, unlike wild-type Y chromosomes, deleted Y chromosomes can be transmitted through both the male and the female lines. Altogether, these findings bring experimental support, on the one hand, to the existence on the Y chromosome of genic meiotic drive function(s) and, on the other hand, to models that consider that dioecy evolved through multiple mutation events. As such, the GSF is actually a system containing more than one locus and whose primary component is located on the Y chromosome.  (+info)

(2/6089) Sexual dimorphism in white campion: deletion on the Y chromosome results in a floral asexual phenotype.

White campion is a dioecious plant with heteromorphic X and Y sex chromosomes. In male plants, a filamentous structure replaces the pistil, while in female plants the stamens degenerate early in flower development. Asexual (asx) mutants, cumulating the two developmental defects that characterize the sexual dimorphism in this species, were produced by gamma ray irradiation of pollen and screening in the M1 generation. The mutants harbor a novel type of mutation affecting an early function in sporogenous/parietal cell differentiation within the anther. The function is called stamen-promoting function (SPF). The mutants are shown to result from interstitial deletions on the Y chromosome. We present evidence that such deletions tentatively cover the central domain on the (p)-arm of the Y chromosome (Y2 region). By comparing stamen development in wild-type female and asx mutant flowers we show that they share the same block in anther development, which results in the production of vestigial anthers. The data suggest that the SPF, a key function(s) controlling the sporogenous/parietal specialization in premeiotic anthers, is genuinely missing in females (XX constitution). We argue that this is the earliest function in the male program that is Y-linked and is likely responsible for "male dimorphism" (sexual dimorphism in the third floral whorl) in white campion. More generally, the reported results improve our knowledge of the structural and functional organization of the Y chromosome and favor the view that sex determination in this species results primarily from a trigger signal on the Y chromosome (Y1 region) that suppresses female development. The default state is therefore the ancestral hermaphroditic state.  (+info)

(3/6089) Microdeletion 22q11 and oesophageal atresia.

Oesophageal atresia (OA) is a congenital defect associated with additional malformations in 30-70% of the cases. In particular, OA is a component of the VACTERL association. Since some major features of the VACTERL association, including conotruncal heart defect, radial aplasia, and anal atresia, have been found in patients with microdeletion 22q11.2 (del(22q11.2)), we have screened for del(22q11.2) by fluorescent in situ hybridisation (FISH) in 15 syndromic patients with OA. Del(22q11.2) was detected in one of them, presenting with OA, tetralogy of Fallot, anal atresia, neonatal hypocalcaemia, and subtle facial anomalies resembling those of velocardiofacial syndrome. The occurrence of del(22q11.2) in our series of patients with OA is low (1/15), but this chromosomal anomaly should be included among causative factors of malformation complexes with OA. In addition, clinical variability of del(22q11.2) syndrome is further corroborated with inclusion of OA in the list of the findings associated with the deletion.  (+info)

(4/6089) Low-copy repeats mediate the common 3-Mb deletion in patients with velo-cardio-facial syndrome.

Velo-cardio-facial syndrome (VCFS) is the most common microdeletion syndrome in humans. It occurs with an estimated frequency of 1 in 4, 000 live births. Most cases occur sporadically, indicating that the deletion is recurrent in the population. More than 90% of patients with VCFS and a 22q11 deletion have a similar 3-Mb hemizygous deletion, suggesting that sequences at the breakpoints confer susceptibility to rearrangements. To define the region containing the chromosome breakpoints, we constructed an 8-kb-resolution physical map. We identified a low-copy repeat in the vicinity of both breakpoints. A set of genetic markers were integrated into the physical map to determine whether the deletions occur within the repeat. Haplotype analysis with genetic markers that flank the repeats showed that most patients with VCFS had deletion breakpoints in the repeat. Within the repeat is a 200-kb duplication of sequences, including a tandem repeat of genes/pseudogenes, surrounding the breakpoints. The genes in the repeat are GGT, BCRL, V7-rel, POM121-like, and GGT-rel. Physical mapping and genomic fingerprint analysis showed that the repeats are virtually identical in the 200-kb region, suggesting that the deletion is mediated by homologous recombination. Examination of two three-generation families showed that meiotic intrachromosomal recombination mediated the deletion.  (+info)

(5/6089) Delineation of the critical deletion region for congenital heart defects, on chromosome 8p23.1.

Deletions in the distal region of chromosome 8p (del8p) are associated with congenital heart malformations. Other major manifestations include microcephaly, intrauterine growth retardation, mental retardation, and a characteristic hyperactive, impulsive behavior. We studied genotype-phenotype correlations in nine unrelated patients with a de novo del8p, by using the combination of classic cytogenetics, FISH, and the analysis of polymorphic DNA markers. With the exception of one large terminal deletion, all deletions were interstitial. In five patients, a commonly deleted region of approximately 6 Mb was present, with breakpoints clustering in the same regions. One patient without a heart defect or microcephaly but with mild mental retardation and characteristic behavior had a smaller deletion within this commonly deleted region. Two patients without a heart defect had a more proximal interstitial deletion that did not overlap with the commonly deleted region. Taken together, these data allowed us to define the critical deletion regions for the major features of a del8p.  (+info)

(6/6089) Severe mental retardation in a boy with partial trisomy 10q and partial monosomy 2q.

A severely mentally subnormal child with many physical stigmata was shown to have the karyotype 46,XY,-2,+der(2),t(2;10)(q31;q24)pat. Full evaluation of this patient's karyotype depended on the family studies. It was shown that a balanced translocation t(2,10) was present in 4 normal males in 3 generations.  (+info)

(7/6089) Renal function studies in an infant with 4p (-) syndrome.

An infant with the syndrome of deletion of the short arm of chromosome 4 is described. In addition, this child had renal insufficiency, which is found rarely in association with the 4p(--) syndrome. Previous reports of this syndrome have described only isolated gross structural abnormalites of the urinary tract. In the case discussed here, we present clinical and functional data which indicate that this patient had bilateral renal dysplasia.  (+info)

(8/6089) A case of ring chromosome.

A girl with a G22 ring chromosome is described. There are few physical abnormalities, performance quotient is in the low normal range but verbal skills are much retarded.  (+info)