Superimposed histologic and genetic mapping of chromosome 9 in progression of human urinary bladder neoplasia: implications for a genetic model of multistep urothelial carcinogenesis and early detection of urinary bladder cancer. (1/1355)

The evolution of alterations on chromosome 9, including the putative tumor suppressor genes mapped to the 9p21-22 region (the MTS genes), was studied in relation to the progression of human urinary bladder neoplasia by using whole organ superimposed histologic and genetic mapping in cystectomy specimens and was verified in urinary bladder tumors of various pathogenetic subsets with longterm follow-up. The applicability of chromosome 9 allelic losses as non-invasive markers of urothelial neoplasia was tested on voided urine and/or bladder washings of patients with urinary bladder cancer. Although sequential multiple hits in the MTS locus were documented in the development of intraurothelial precursor lesions, the MTS genes do not seem to represent a major target for p21-23 deletions in bladder cancer. Two additional tumor suppressor genes involved in bladder neoplasia located distally and proximally to the MTS locus within p22-23 and p11-13 regions respectively were identified. Several distinct putative tumor suppressor gene loci within the q12-13, q21-22, and q34 regions were identified on the q arm. In particular, the pericentromeric q12-13 area may contain the critical tumor suppressor gene or genes for the development of early urothelial neoplasia. Allelic losses of chromosome 9 were associated with expansion of the abnormal urothelial clone which frequently involved large areas of urinary bladder mucosa. These losses could be found in a high proportion of urothelial tumors and in voided urine or bladder washing samples of nearly all patients with urinary bladder carcinoma.  (+info)

TIF1gamma, a novel member of the transcriptional intermediary factor 1 family. (2/1355)

We report the cloning and characterization of a novel member of the Transcriptional Intermediary Factor 1 (TIF1) gene family, human TIF1gamma. Similar to TIF1alpha and TIF1beta, the structure of TIF1beta is characterized by multiple domains: RING finger, B boxes, Coiled coil, PHD/TTC, and bromodomain. Although structurally related to TIF1alpha and TIF1beta, TIF1gamma presents several functional differences. In contrast to TIF1alpha, but like TIF1beta, TIF1 does not interact with nuclear receptors in yeast two-hybrid or GST pull-down assays and does not interfere with retinoic acid response in transfected mammalian cells. Whereas TIF1alpha and TIF1beta were previously found to interact with the KRAB silencing domain of KOX1 and with the HP1alpha, MODI (HP1beta) and MOD2 (HP1gamma) heterochromatinic proteins, suggesting that they may participate in a complex involved in heterochromatin-induced gene repression, TIF1gamma does not interact with either the KRAB domain of KOX1 or the HP1 proteins. Nevertheless, TIF1gamma, like TIF1alpha and TIF1beta, exhibits a strong silencing activity when tethered to a promoter. Since deletion of a novel motif unique to the three TIF1 proteins, called TIF1 signature sequence (TSS), abrogates transcriptional repression by TIF1gamma, this motif likely participates in TIF1 dependent repression.  (+info)

Insulin dependent diabetes mellitus (IDDM) and autoimmune thyroiditis in a boy with a ring chromosome 18: additional evidence of autoimmunity or IDDM gene(s) on chromosome 18. (3/1355)

A 4 year 3 month old boy with insulin dependent diabetes mellitus (IDDM), autoimmune thyroiditis, slight mental retardation, facial dysmorphism, and a de novo ring chromosome 18 (deletion 18q22.3-18qter) is described. This unique association of defects could represent a chance association. Alternatively, the clinical features could be the result of the chromosomal aberration. If so, one could speculate that a gene or genes on chromosome 18 might act as a suppressor or activator of the autoimmune process by itself or in concert with other IDDM loci.  (+info)

Spectral karyotype analysis of T-cell acute leukemia. (4/1355)

Analysis of 15 cases of T-cell acute lymphoblastic leukemia with spectral karyotyping (SKY), which can identify all chromosomes simultaneously, clarified the chromosome rearrangements in 3 cases and confirmed them in 11 others; no abnormal cells were identified in 1 case, which had only 10% abnormal cells. Five of the latter cases had a normal karyotype. Thus, the use of SKY substantially improves the precision of karyotype analysis of malignant cells, which in turn leads to a more accurate assessment of the genotypic abnormalities in those cells.  (+info)

Cloning and characterization of a secreted frizzled-related protein that is expressed by the retinal pigment epithelium. (5/1355)

The Wnt/frizzled cell signaling pathway has been implicated in the determination of polarity in a number of systems, including the Drosophila retina. The vertebrate retina develops from an undifferentiated neuroepithelium into an organized and laminated structure that demonstrates a high degree of polarity at both the tissue and cellular levels. In the process of searching for molecules that are preferentially expressed by the vertebrate retinal pigment epithelium (RPE), we identified secreted frizzled-related protein 5 (SFRP5), a member of the SFRP family that appears to act by modulating Wnt signal transduction. SFRP5 is highly expressed by RPE cells, and is also expressed in the pancreas. Within the retina, the related molecule SFRP2 is expressed specifically by cells of the inner nuclear layer. Thus, photoreceptors are likely to be bathed by two opposing gradients of SFRP molecules. Consistent with SFRP5 's postulated role in modulating Wnt signaling in the retina, it inhibits the ability of Xwnt-8 mRNA to induce axis duplication in Xenopus embryos. The human SFRP5 gene consists of three coding exons and it maps to chromosome 10q24.1; human SFRP2 maps to 4q31.3. Based on the biology and complementary expression patterns of SFRP2 and SFRP5, we suggest that they may be involved in determining the polarity of photoreceptor, and perhaps other, cells in the retina.  (+info)

Generation and characterization of human smooth muscle cell lines derived from atherosclerotic plaque. (6/1355)

The study of atherogenesis in humans has been restricted by the limited availability and brief in vitro life span of plaque smooth muscle cells (SMCs). We describe plaque SMC lines with extended life spans generated by the expression of the human papillomavirus (HPV)-16 E6 and E7 genes, which has been shown to extend the life span of normal adult human aortic SMCs. Resulting cell lines (pdSMC1A and 2) demonstrated at least 10-fold increases in life span; pdSMC1A became immortal. The SMC identity of both pdSMC lines was confirmed by SM22 mRNA expression. pdSMC2 were generally diploid but with various structural and numerical alterations; pdSMC1A demonstrated several chromosomal abnormalities, most commonly -Y, +7, -13, anomalies previously reported in both primary pdSMCs and atherosclerotic tissue. Confluent pdSMC2 appeared grossly similar to HPV-16 E6/E7-expressing normal adult aortic SMCs (AASMCs), exhibiting typical SMC morphology/growth patterns; pdSMC1A displayed irregular cell shape/organization with numerous mitotic figures. Dedifferentiation to a synthetic/proliferative phenotype has been hypothesized as a critical step in atherogenesis, because rat neonatal SMCs and adult intimal SMCs exhibit similar gene expression patterns. To confirm that our pdSMC lines likewise express this apparent plaque phenotype, osteopontin, platelet-derived growth factor B, and elastin mRNA levels were determined in pdSMC1A, pdSMC2, and AASMCs. However, no significant increases in osteopontin or platelet-derived growth factor B expression levels were observed in either pdSMC compared with AASMCs. pdSMC2 alone expressed high levels of elastin mRNA. Lower levels of SM22 mRNA in pdSMC1A suggested greater dedifferentiation and/or additional population doublings in pdSMC1A relative to pdSMC2. Both pdSMC lines (particularly 1A) demonstrated high message levels for matrix Gla protein, previously reported to be highly expressed by human neointimal SMCs in vitro. These results describe 2 novel plaque cell lines exhibiting various features of plaque SMC biology; pdSMC2 may represent an earlier plaque SMC phenotype, whereas pdSMC1A may be representative of cells comprising an advanced atherosclerotic lesion.  (+info)

Localization of single- and low-copy sequences on tomato synaptonemal complex spreads using fluorescence in situ hybridization (FISH). (7/1355)

Fluorescence in situ hybridization (FISH) is a powerful means by which single- and low-copy DNA sequences can be localized on chromosomes. Compared to the mitotic metaphase chromosomes that are normally used in FISH, synaptonemal complex (SC) spreads (hypotonically spread pachytene chromosomes) have several advantages. SC spreads (1) are comparatively free of debris that can interfere with probe penetration, (2) have relatively decondensed chromatin that is highly accessible to probes, and (3) are about ten times longer than their metaphase counterparts, which permits FISH mapping at higher resolution. To investigate the use of plant SC spreads as substrates for single-copy FISH, we probed spreads of tomato SCs with two single-copy sequences and one low-copy sequence (ca. 14 kb each) that are associated with restriction fragment length polymorphism (RFLP) markers on SC 11. Individual SCs were identified on the basis of relative length, arm ratio, and differential staining patterns after combined propidium iodide (PI) and 4', 6-diamidino-2-phenylindole (DAPI) staining. In this first report of single-copy FISH to SC spreads, the probe sequences were unambiguously mapped on the long arm of tomato SC 11. Coupled with data from earlier studies, we determined the distance in micrometers, the number of base pairs, and the rates of crossing over between these three FISH markers. We also observed that the order of two of the FISH markers is reversed in relation to their order on the molecular linkage map. SC-FISH mapping permits superimposition of markers from molecular linkage maps directly on pachytene chromosomes and thereby contributes to our understanding of the relationship between chromosome structure, gene activity, and recombination.  (+info)

Isolation and mapping of a putative b subunit of human ATP synthase (ATP-BL) from human leukocytes. (8/1355)

From a human-leukocyte cDNA library, we cloned cDNA encoding a novel protein, which has a significant homology with the b subunit of ATP synthase (proton-transporting ATPase, F1F0-ATPase; EC3.6.1.34) derived from Anabaena sp. strain PCC 7120. The cDNA has an open reading frame of 1314 nucleotides corresponding to 438 amino acids. The coding sequence was 37.9% identical over 57 amino acid with b subunit of ATP synthase. The 34-amino-acid region of the predicted peptide sequence displays a coiled-coil motif that could form a complex with some other protein(s). We designated this novel gene as ATP-BL because of its homology to the b subunit of ATP synthase. The ATP-BL locus was mapped by fluorescence in situ hybridization (FISH) and radiation hybrid mapping to the q24 region of chromosome 16.  (+info)