Genome-wide linkage analysis of chromogranin B expression in the CEPH pedigrees: implications for exocytotic sympathochromaffin secretion in humans. (9/53)

Chromogranin B (CgB), a major member of the chromogranin/secretogranin family of catecholamine storage vesicle secretory proteins, plays both intracellular (vesiculogenic) and extracellular (prohormone) roles in the neuroendocrine system, and its biosynthesis and release are under the control of efferent sympathetic nerve traffic ("stimulus-transcription coupling"). To explore the role of heredity in control of CgB, we conducted a genome-wide linkage analysis of CgB release in 12 extended CEPH (Centre d'Etude du Polymorphisme Humain) pedigrees. Region-specific radioimmunoassays were used to measure five CgB fragments in plasma: CgB1-16, CgB312-331, CgB439-451, CgB568-577, and CgB647-657. Substantial heritability, as measured by h2r, was observed for three of the fragment concentrations, CgB312-331, CgB439-451, and CgB568-577, which yielded h2r estimates ranging from 0.378 (P = 0.002) to 0.910 (P < 0.0000001). Variance-component genome-wide linkage analysis with 654 microsatellite markers at 5 cM spacing identified a major quantitative trait locus for CgB312-331 on chromosome 11q24-q25 with a maximum multipoint LOD score of 5.84. Significant allelic associations between markers in the region and CgB levels were also observed. Although the 2-LOD confidence interval for linkage did not include the CgB locus itself, known trans-activators of the CgB gene promoter, or prohormone cleaving proteases, examination of positional candidate loci within this region yielded novel and plausible physiological candidates for further exploration. Allelic variation in this region may thus influence effects of sympathetic outflow on target organs in humans.  (+info)

Pleiotropic effects of novel trans-acting loci influencing human sympathochromaffin secretion. (10/53)

Family studies have suggested a genetic contribution to variation in blood pressure, but the genes responsible have thus far eluded identification. The use of intermediate phenotypes associated with hypertension, such as chromogranin plasma concentrations, may assist the discovery of hypertension-predisposing loci. We measured the concentrations of four chromogranin A (CHGA) and B (CHGB) peptides in 742 individuals from 235 nuclear families. The CHGA- and CHGB-derived peptides displayed significant heritability and revealed significant genetic correlations, most strikingly observed between CHGA(361-372) (catestatin) and CHGB(439-451). A 5-cM microsatellite genome scan revealed significant and suggestive evidence for linkage on several chromosomes for three of the peptides. Subsequent bivariate linkage analysis for peptides CHGA(361-372) and CHGB(439-451), which showed evidence for convergent linkage peaks on chromosomes 2, 7, and 13, resulted in increased evidence for linkage to these regions, suggesting pleiotropic effects of these three loci on multiple chromogranin traits. Because CHGA itself is on chromosome 14q32, and CHGB itself is on chromosome 20pter-p12, the pleiotropic regions on chromosomes 2, 7, and 13 must represent trans-acting quantitative trait loci coordinately affecting CHGA/CHGB biosynthesis and/or exocytotic secretion, likely by regulating efferent sympathetic outflow, a conclusion consistent with the in vitro studies presented here of the dual control of both exocytosis and transcription of these peptides by secretory stimuli in chromaffin cells. The results suggest a new approach to heritable autonomic control of circulation and the genetic basis of cardiovascular diseases such as systemic hypertension.  (+info)

Identification of a novel targeting sequence for regulated secretion in the serine protease inhibitor neuroserpin. (11/53)

Ns (neuroserpin) is a member of the serpin (serine protease inhibitor) gene family that is primarily expressed within the central nervous system. Its principal target protease is tPA (tissue plasminogen activator), which is thought to contribute to synaptic plasticity and to be secreted in a stimulus-dependent manner. In the present study, we demonstrate in primary neuronal cultures that Ns co-localizes in LDCVs (large dense core vesicles) with the regulated secretory protein chromogranin B. We also show that Ns secretion is regulated and can be specifically induced 4-fold by secretagogue treatment. A novel 13-amino-acid sorting signal located at the C-terminus of Ns is identified that is both necessary and sufficient to target Ns to the regulated secretion pathway. Its deletion renders Ns no longer responsive to secretagogue stimulation, whereas PAI-Ns [Ns (neuroserpin)-PAI-1 (plasminogen activator inhibitor-1) chimaera appending the last 13 residues of Ns sequence to the C-terminus of PAI-1] shifts PAI-1 secretion into a regulated secretory pathway.  (+info)

Identification of residues participating in the interaction between an intraluminal loop of inositol 1,4,5-trisphosphate receptor and a conserved N-terminal region of chromogranin B. (12/53)

The inositol 1,4,5-trisphosphate receptor (IP3R) is a membrane channel that conducts calcium ions from the intracellular calcium stores. Despite a wealth of information on the cytoplasmic regulation of the IP3R, little is known about its regulation on the luminal side of the calcium stores. Here, we report studies on the IP3R intraluminal loop L3-2 and a conserved N-terminal region of chromogranin B. The IP3R loop is an important part of the channel's pore-forming region, and the chromogranin peptide has been shown to competitively inhibit calcium signaling by IP3R. Using the NMR titration approach, we showed that a part of the L3-2 is involved in a specific interaction with the chromogranin B peptide. Further NMR resonance assignments revealed that the 14th-20th residues of L3-2 are the keys to the binding to the chromogranin B peptide. Through detailed analysis of the data, we suggest a mechanism of IP3R regulation by chromogranin B involving conformational exchanges of the L3-2 region. Our report presents the findings of the first study on the interaction between the luminal loop of the IP3 receptor and its regulator at residue-resolution. The approaches described here should help to guide further studies on the interactions between the IP3R and other luminal side regulators.  (+info)

Inositol 1,4,5 trisphosphate receptor and chromogranin B are concentrated in different regions of the hippocampus. (13/53)

Calcium (Ca(2+)) release from intracellular stores plays a crucial role in many cellular functions in the brain. These intracellular signals have been shown to be transmitted within and between cells. We report a non-uniform distribution of proteins essential for Ca(2+) signaling in acutely prepared brain slice preparations and organotypic slice cultures, both made from rat hippocampus. The Type I inositol-1,4,5 trisphosphate receptor (InsP(3)R1) is the main InsP(3)R subtype in neurons. Immunohistochemistry experiments showed a prominent expression of InsP(3)R1 in the CA1 region of the hippocampus whereas the CA3 region and dentate gyrus (DG) showed only moderate immunoreactivity. In contrast, chromogranin B (CGB), a protein binding to the InsP(3)R1 on the luminal side of the endoplasmic reticular membrane was enriched in the CA3 region whereas DG and the CA1 region showed only faint CGB signals. The neuronal kinases leading to the formation of inositol-1,4,5 trisphosphate (InsP(3)), phosphatidylinositol-4-kinase (PI4K), and phosphatidylinositol-4-phosphate-5-kinase (PIPK), showed strong immunoreactivity throughout all hippocampal cell fields with differences in the subcellular distribution. Moreover, a distinct band of strong CGB and PIPK immunoreactivity was observed in the CA3 region that coincides with the mossy fiber tract (stratum lucidum). These data show differential expression of the components of the signaling toolkit leading to InsP(3)-mediated Ca(2+) release in cells of the hippocampus. The regulation of these differences may play an important role in various neuropathologic conditions such as Alzheimer's disease, epilepsy, or schizophrenia.  (+info)

Proteomic profiling of von Hippel-Lindau syndrome and multiple endocrine neoplasia type 2 pheochromocytomas reveals different expression of chromogranin B. (14/53)

Pheochromocytomas are catecholamine-producing tumors that can occur in the context of von Hippel-Lindau syndrome (VHL) and multiple endocrine neoplasia type 2 (MEN2). Pheochromocytomas in these two syndromes differ in histopathological features, catecholamine metabolism, and clinical phenotype. To further investigate the nature of these differences, we compared the global protein expressions of 8 MEN2A-associated pheochromocytomas with 11 VHL-associated pheochromocytomas by two-dimensional gel electrophoresis proteomic profiling followed by sequencing and identification of differentially expressed proteins. Although both types of pheochromocytoma shared similarities in their protein expression patterns, the expression of several proteins was distinctly different between VHL- and MEN2A-associated pheochromocytomas. We identified several of these differentially expressed proteins. One of the proteins with higher expression in MEN2-associated tumors was chromogranin B, of which the differential expression was confirmed by western blot analysis. Our results expand the evidence for proteomic differences between these two tumor entities, and suggest that VHL-associated pheochromocytomas may be deficient in fundamental machinery for catecholamine storage. In light of these new findings, as well as existing evidence for differences between both types of pheochromocytomas, we propose that these tumors may have different developmental origins.  (+info)

Genetic variation within adrenergic pathways determines in vivo effects of presynaptic stimulation in humans. (15/53)


The neuroendocrine peptide catestatin is a cutaneous antimicrobial and induced in the skin after injury. (16/53)