(1/6642) Characterization and partial purification of a novel neutrophil membrane-associated kinase capable of phosphorylating the respiratory burst component p47phox.

The phosphorylation of p47phox is widely viewed as an important step in the activation of the neutrophil respiratory burst oxidase system. The exact nature of the kinase(s) responsible remains to be elucidated. We show here that such a kinase was detected on neutrophil membranes activated by either PMA or formyl-methionyl-leucyl-phenylalanine. This enzyme is not intrinsic to the neutrophil membrane and could be eluted with 0.5 M NaCl. The kinase activity was partially purified and was found not to be due to the presence of previously suggested kinases, including protein kinase C isotypes, mitogen-activated protein kinase and protein kinase B. Gel filtration and renaturation in substrate gels suggest a molecular mass of between 45 and 51 kDa. The kinase activity was independent of calcium and lipids but was potently inhibited by staurosporine. Treatment with protein phosphatase 2Ac suggested that the kinase was activated by serine/threonine phosphorylation. Phosphopeptide maps indicated that the kinase phosphorylated p47phox on similar sites to those found in vivo. These results indicate that activation of neutrophils by PMA results in the activation of a membrane-associated kinase that may play a part in the regulation of neutrophil NADPH oxidase through its ability to phosphorylate p47phox.  (+info)

(2/6642) Physical characterization of a low-charge glycoform of the MUC5B mucin comprising the gel-phase of an asthmatic respiratory mucous plug.

We have previously noted that sequential extraction of an asthmatic mucous exudate with 6 M guanidinium chloride yielded a fraction of the mucins that were most resistant to solubilization and of high Mr [Sheehan, Richardson, Fung, Howard and Thornton (1995) Am. J. Respir. Cell Mol. Biol. 13, 748-756]. Here we show that this mucin fraction is dominated (at least 96% of the total) by the low-charge glycoform of the MUC5B gene product. Seen in the electron microscope the mucins appeared mainly as compact 'island' structures composed of linear threads often emanating from globular 'nodes' rather than the discrete linear threads more typical of mucins that we have previously described. The effect of reducing agents was as expected for other gel-forming mucins, i.e. reduced subunits or monomers of Mr 3x10(6)) were produced within 15 min of treatment. Kinetic experiments on the cleavage of the intact mucins with the proteinase trypsin indicated two clear regimes of fragmentation. An initial rapid cleavage generated mucins ranging from Mr=4x10(6) to 30x10(6) that in the electron microscope appeared as polydisperse threads (500-3000 nm in length), similar to normal and other respiratory mucins that we have previously characterized. A subsequent slower fragmentation over many hours yielded a major fragment of Mr 3x10(6) and length 200-600 nm, very similar in size and Mr to the subunits obtained by reduction. The results suggest that the MUC5B mucin is assembled, first into polydisperse linear threads, which are then linked together via a protein-mediated process. This might involve part of the mucin polypeptide or an as yet unidentified protein(s). The high proteinase susceptibility of the linkage suggests that it might be a point of control for mucin size and thus mucus rheology.  (+info)

(3/6642) An improved method for the structural profiling of keratan sulfates: analysis of keratan sulfates from brain and ovarian tumors.

A previously developed method for the structural fingerprinting of keratan sulfates (Brown et al., Glycobiology, 5, 311-317, 1995) has been adapted for use with oligosaccharides fluorescently labeled with 2-aminobenzoic acid following keratanase II digestion. The oligosaccharides are separated by high-pH anion-exchange chromatography on a Dionex AS4A-SC column. This methodology permits quantitative analysis of labeled oligosaccharides which can be detected at the sub-nanogram ( approximately 100 fmol) level. Satisfactory calibration of this method can be achieved using commercial keratan sulfate standards. Keratan sulfates from porcine brain phosphocan and human ovarian tumors have been examined using this methodology, and their structural features are discussed.  (+info)

(4/6642) Purification and identification of a novel subunit of protein serine/threonine phosphatase 4.

The catalytic subunit of protein serine/threonine phosphatase 4 (PP4C) has greater than 65% amino acid identity to the catalytic subunit of protein phosphatase 2A (PP2AC). Despite this high homology, PP4 does not appear to associate with known PP2A regulatory subunits. As a first step toward characterization of PP4 holoenzymes and identification of putative PP4 regulatory subunits, PP4 was purified from bovine testis soluble extracts. PP4 existed in two complexes of approximately 270-300 and 400-450 kDa as determined by gel filtration chromatography. The smaller PP4 complex was purified by sequential phenyl-Sepharose, Source 15Q, DEAE2, and Superdex 200 gel filtration chromatographies. The final product contained two major proteins: the PP4 catalytic subunit plus a protein that migrated as a doublet of 120-125 kDa on SDS-polyacrylamide gel electrophoresis. The associated protein, termed PP4R1, and PP4C also bound to microcystin-Sepharose. Mass spectrometry analysis of the purified complex revealed two major peaks, at 35 (PP4C) and 105 kDa (PP4R1). Amino acid sequence information of several peptides derived from the 105 kDa protein was utilized to isolate a human cDNA clone. Analysis of the predicted amino acid sequence revealed 13 nonidentical repeats similar to repeats found in the A subunit of PP2A (PP2AA). The PP4R1 cDNA clone engineered with an N-terminal Myc tag was expressed in COS M6 cells and PP4C co-immunoprecipitated with Myc-tagged PP4R1. These data indicate that one form of PP4 is similar to the core complex of PP2A in that it consists of a catalytic subunit and a "PP2AA-like" structural subunit.  (+info)

(5/6642) Recombinant human peroxisomal targeting signal receptor PEX5. Structural basis for interaction of PEX5 with PEX14.

Import of matrix proteins into peroxisomes requires two targeting signal-specific import receptors, Pex5p and Pex7p, and their binding partners at the peroxisomal membrane, Pex13p and Pex14p. Several constructs of human PEX5 have been overexpressed and purified by affinity chromatography in order to determine functionally important interactions and provide initial structural information. Sizing chromatography and electron microscopy suggest that the two isoforms of the human PTS1 receptor, PEX5L and PEX5S, form homotetramers. Surface plasmon resonance analysis indicates that PEX5 binds to the N-terminal fragment of PEX14-(1-78) with a very high affinity in the low nanomolar range. Stable complexes between recombinant PEX14-(1-78) and both the full-length and truncated versions of PEX5 were formed in vitro. Analysis of these complexes revealed that PEX5 possesses multiple binding sites for PEX14, which appear to be distributed throughout its N-terminal half. Coincidentally, this part of the molecule is also responsible for oligomerization, whereas the C-terminal half with its seven tetratricopeptide repeats has been reported to bind PTS1-proteins. A pentapeptide motif that is reiterated seven times in PEX5 is proposed as a determinant for the interaction with PEX14.  (+info)

(6/6642) Isolation of eukaryotic ribosomal proteins. Purification and characterization of the 60 S ribosomal subunit proteins L4, L5, L7, L9, L11, L12, L13, L21, L22, L23, L26, L27, L30, L33, L35', L37, and L39.

The proteins of the large subunit of rat liver ribosomes were separated into seven groups by stepwise elution from carboxymethylcellulose with LiCl at pH 6.5. Seventeen proteins (L4, L5, L7, L9, L11, L12, L13, L21, L22, L23, L26, L27, L30, L33, L35', L37, and L39) were isolated from three of the groups (B60, D60, G60) by ion exchange chromatography on carboxymethylcellulose and by filtration through Sephadex. The amount of protein obtained varied from 0.5 to 15 mg. Eight of the proteins (L9, L11, L13, L21, L22, L35', L37 and L39) had no detectable contamination; the impurities in the others were no greater than 9%. The molecular weight of the proteins was estimated by polyacrylamide gel electrophoresis in sodium dodecyl sulfate; the amino acid composition was determined.  (+info)

(7/6642) Acid-catalyzed lactonization of alpha2,8-linked oligo/polysialic acids studied by high performance anion-exchange chromatography.

Recent studies from many laboratories revealed remarkable structural, distributional, and functional diversities of oligo/polysialic acids (OSA/PSA) that exist in organisms ranging from bacteria to man. These diversities are further complicated by the fact that OSA/PSA spontaneously form lactones under even mildly acidic conditions. By using high performance anion-exchange chromatography (HPAEC) with nitrate eluents, we found that lactonization of alpha2,8-linked OSA/PSA (oligo/poly-Neu5Ac, oligo/poly-Neu5Gc and oligo/poly-KDN) proceeds readily, and the lactonization process displays three discrete stages. The initial stage is characterized by limited lactonization occurring between two internal sialic acid residues, reflected by a regular pattern of lactone peaks interdigitated with non-lactonized peaks on HPAEC. In the middle stage, multiple lactonized species are formed from a molecule with a given degree of polymerization (DP), in which the maximum number of lactone rings formed equals DP minus 2. At the final stage, completely lactonized species become the major components, resulting in drastic changes in the physicochemical properties of the sample. Interestingly, the smallest lactonizable OSA are tetramer, trimer, and dimer at the initial, middle, and final stages, respectively. At any of the stages, OSA/PSA of higher DP lactonize more rapidly, but all the lactone rings rapidly open up when exposed to mild alkali. Lactonized OSA/PSA are resistant to both enzyme- and acid-catalyzed glycosidic bond cleavage. The latter fact was utilized to obtain more high DP oligo/poly(alpha2,8-Neu5Gc) chains from a polysialoglycoprotein. Our results should be useful in preparation, storage, and analysis of OSA/PSA. Possible biological significance and bioengineering potentials of lactonization are discussed.  (+info)

(8/6642) Human triclonal anti-IgG gammopathy. I. Iso-electric focusing characteristics of the IgG, IgA and IgM anti-IgG and their heavy and light chains.

Human IgG, IgA and IgM anti-IgG autoantibodies have been isolated from the serum of an individual with Felty's syndrome. These were initially noted as soluble circulating serum complexes by analytical ultracentrifugation. Isolation was accomplished by solid phase immunoadsorption and each of the three antibody populations obtained was shown to be of restricted heterogeneity by liquid and polyacrylamide gel electrofocussing methods. Type kappa light chains were obtained from each protein. Co-isoelectric focusing experiments of all possible pairs of these light chains showed them to have identical net charge characteristics. Heavy chains obtained from each protein were also monoclonal and of differing isoelectric point. The availability of this serum provides a human model with which to study the changes which may occur in autoantibodies during the autoimmune response.  (+info)