Expression of serum amyloid A protein in the absence of the acute phase response does not reduce HDL cholesterol or apoA-I levels in human apoA-I transgenic mice. (41/13503)

Plasma concentrations of high density lipoprotein (HDL) cholesterol and its major apolipoprotein (apo)A-I are significantly decreased in inflammatory states. Plasma levels of the serum amyloid A (SAA) protein increase markedly during the acute phase response and are elevated in many chronic inflammatory states. Because SAA is associated with HDL and has been shown to be capable of displacing apoA-I from HDL in vitro, it is believed that expression of SAA is the primary cause of the reduced HDL cholesterol and apoA-I in inflammatory states. In order to directly test this hypothesis, we constructed recombinant adenoviruses expressing the murine SAA and human SAA1 genes (the major acute phase SAA proteins in both species). These recombinant adenoviruses were injected intravenously into wild-type and human apoA-I transgenic mice and the effects of SAA expression on HDL cholesterol and apoA-I were compared with mice injected with a control adenovirus. Plasma levels of SAA were comparable to those seen in the acute phase response in mice and humans. However, despite high plasma levels of murine or human SAA, no significant changes in HDL cholesterol or apoA-I levels were observed. SAA was found associated with HDL but did not specifically alter the cholesterol or human apoA-I distribution among lipoproteins. In summary, high plasma levels of SAA in the absence of a generalized acute phase response did not result in reduction of HDL cholesterol or apoA-I in mice, suggesting that there are components of the acute phase response other than SAA expression that may directly influence HDL metabolism.  (+info)

The beta-subunit of human chorionic gonadotrophin exists as a homodimer. (42/13503)

The free beta-subunit of human chorionic gonadotrophin (hCGbeta) is well recognised as a product of many epithelial tumours. Recently, it has been shown that this ectopic production may have a functional relationship to tumour growth. The growth-promoting activity of hCGbeta may be explained by its structural similarity to a family of growth factors which all contain the same distinct topological fold known as the cystine-knot motif. Since the other members of this family all exhibit their activities as homo- and heterodimers, it is possible that the same may be true for hCGbeta. Using size-exclusion chromatography, low stringency SDS-PAGE and matrix assisted laser desorption/ionisation (MALDI) time-of-flight (TOF) mass spectrometry (MS) we have shown that pure preparations of hCGbeta contain hCGbetabeta homodimers. Size-exclusion chromatography revealed asymmetric elution profiles with a forward peak corresponding to the size-exclusion characteristic of a globular protein with an approximate mass of 44-54 kDa and a late shoulder centered around an elution position expected for a globular protein of approximately 29 kDa. Two immunoreactive hCGbeta species, of approximately 32 and 64 kDa, were clearly resolved by SDS-PAGE and Western blotting. When analysed by MALDI-TOF MS a |mf23 kDa monomer and a |mf46 kDa dimer were identified. Formation of hCGbetabeta homodimers is consistent with the behaviour of other cystine-knot growth factors and strengthens the inclusion of the glycoprotein hormones within this superfamily. It has yet to be determined whether it is this dimeric molecular species that is responsible for growth-promoting activity of hCGbeta preparations in tumours.  (+info)

Acute effects of intravenous infusion of ApoA1/phosphatidylcholine discs on plasma lipoproteins in humans. (43/13503)

To investigate the metabolism of nascent HDLs, apoA1/phosphatidylcholine (apoA1/PC) discs were infused IV over 4 hours into 7 healthy men. Plasma total apoA1 and phospholipid (PL) concentrations increased during the infusions. The rise in plasma apoA1 was greatest in small prebeta-migrating particles not present in the infusate. Total HDL unesterified cholesterol (UC) also increased simultaneously. After stopping the infusion, the concentrations of apoA1, PL, HDL UC, and small prebeta HDLs decreased, whereas those of HDL cholesteryl ester (CE) and large alpha-migrating apoA1 containing HDLs increased. ApoB-containing lipoproteins became enriched in CEs. Addition of apoA1/PC discs to whole blood at 37 degrees C in vitro also generated small prebeta HDLs, but did not augment the transfer of UC from erythrocytes to plasma. We conclude that the disc infusions increased the intravascular production of small prebeta HDLs in vivo, and that this was associated with an increase in the efflux and esterification of UC derived from fixed tissues. The extent to which the increase in tissue cholesterol efflux was dependent on that in prebeta HDL production could not be determined. Infusion of discs also reduced the plasma apoB and apoA2 concentrations, and increased plasma triglycerides and apoC3. Thus, nascent HDL secretion may have a significant impact on prebeta HDL production, reverse cholesterol transport and lipoprotein metabolism in humans.  (+info)

Expression, purification, and biochemical characterization of the amino-terminal extracellular domain of the human calcium receptor. (44/13503)

We purified the extracellular domain (ECD) of the human calcium receptor (hCaR) from the medium of HEK-293 cells stably transfected with a hCaR cDNA containing an isoleucine 599 nonsense mutation. A combination of lectin, anion exchange, and gel permeation chromatography yielded milligram quantities of >95% pure protein from 15 liters of starting culture medium. The purified ECD ran as an approximately 78-kDa protein on SDS-polyacrylamide gel electrophoresis and was found to be a disulfide-linked dimer. Its NH2-terminal sequence, carbohydrate content, and CD spectrum were defined. Tryptic proteolysis studies showed two major sites accessible to cleavage. These studies provide new insights into the structure of the hCaR ECD. Availability of purified ECD protein should permit further structural studies to help define the mechanism of Ca2+ activation of this G protein-coupled receptor.  (+info)

Soluble murine IL-1 receptor type I induces release of constitutive IL-1 alpha. (45/13503)

IL-1 alpha and IL-1 beta are proinflammatory cytokines involved in the pathogenesis of many infectious and noninfectious inflammatory diseases. To reduce IL-1 toxicity, extracellular domains of the soluble (s) IL-1R are shed from cell membranes and prevent triggering of cell-bound receptors. We investigated to what extent murine sIL-1RI can neutralize the IL-1 produced by LPS-stimulated macrophages. When mouse peritoneal macrophages were incubated with LPS, addition of sIL-1RI significantly inhibited the bioactivity of IL-1. Stimulation of cells with sIL-1RI alone induced no bioactive IL-1. When immunoreactive cytokine concentrations were measured with specific radioimmunoassays, sIL-1RI alone appeared to induce a significant release of IL-1 alpha in a concentration-dependent manner. This effect was independent of new protein synthesis. The production of IL-1 beta or TNF-alpha was not influenced by sIL-1RI. There was no interference of sIL-1RI with the IL-1 alpha radioimmunoassay. In mice, an i.v. injection of sIL-RI alone induced a rapid release of IL-1 alpha, but not of TNF-alpha or IL-1 beta. Treatment of mice with sIL-1RI improved the survival during a lethal infection with Candida albicans. In conclusion, sIL-1RI induces a rapid release of IL-1 alpha from cells, as well as into the systemic circulation. Although this IL-1 alpha may be inactivated in circulation by the same sIL-1RI, this phenomenon probably has immunostimulatory effects at local levels where the sIL-1RI-induced IL-1 alpha acts in a paracrine or autocrine manner.  (+info)

The retention and distribution by healthy young men of stable isotopes of selenium consumed as selenite, selenate or hydroponically-grown broccoli are dependent on the isotopic form. (46/13503)

Twenty-seven healthy young men were randomly assigned to diets that supplied low (32.6 microg/d) or high (226.5 microg/d) levels of selenium for a 105-d study. After consuming the diets for 85 d, subjects were fed a test meal that contained 74Se in the form of selenite or selenate and 82Se incorporated into hydroponically-raised broccoli. Urine, fecal and blood samples were collected daily. Isotope absorption was not different (P > 0.05) for selenate and Se in broccoli; Se absorption from selenite was highly variable and was not included in statistical analyses. Significantly more isotope was absorbed by subjects fed the high Se diet (P = 0. 015). Urinary isotope excretion was greater when selenate was fed than when broccoli was fed (P = 0.0001), and consequently more Se from broccoli (as compared to selenate) was retained (59.2 +/- 2.4 and 36.4 +/- 4.6% for Se in broccoli and selenate, respectively; P = 0.0001). Despite the higher retention, less isotope from broccoli than from selenate was present in the plasma. Plasma proteins separated by gel permeation chromatography showed that most of the isotopes were distributed between two medium molecular weight peaks. Less isotope was found in plasma proteins of subjects fed the high Se diet, but the form of Se had no effect on isotope distribution. These results show that dietary Se intake alters the retention of stable isotopes of Se and that humans retain and distribute Se from broccoli in a different manner than Se from inorganic salts.  (+info)

Distribution of chitinase in guinea pig tissues and increases in levels of this enzyme after systemic infection with Aspergillus fumigatus. (47/13503)

Intravenous infection of guinea pigs with the fungus Aspergillus fumigatus resulted in increased levels of chitinase in serum and tissues of the animals. The molecular properties of the enzyme were demonstrated to be different from those of the fungal chitinase, but also from guinea pig lysozyme and beta-N-acetylhexosaminidase. Bio-Gel P-100 gel filtration showed that in liver, spleen, heart and lung tissue of control animals there were two molecular mass forms present with apparent molecular masses of 35 kDa and 15 kDa. In brain and serum, only the 35 kDa form was detectable. Kidney showed only the 15 kDa form. Upon infection the 35 kDa form appeared in kidney and increased in the other tissues. When a less pathogenic form of the fungus was used the 35 kDa form remained absent in kidney. In contrast to human serum chitinase, the enzyme from guinea pig serum and tissues did bind to concanavalin A-Sepharose. This was the case for both molecular mass forms. The mode of cleavage of the substrate 4-methylumbelliferyl-tri-N-acetylchitotrioside (MU-[GlcNAc]3, where GlcNAc is N-acetylglucosamine) by the two forms of the enzyme was the same: both [GlcNAc]2 and [GlcNAc]3 were released. The chitinase activity levels in the control tissues showed a large variation in this order: spleen > lung, kidney > liver > heart > brain. The fact that spleen showed the highest chitinase level is in agreement with its major role as a lymphoid organ in cases of systemic infections. The relative increases upon infection were the highest for the tissues that showed low control values.  (+info)

Dibromopropanone cross-linking of the phosphopantetheine and active-site cysteine thiols of the animal fatty acid synthase can occur both inter- and intrasubunit. Reevaluation of the side-by-side, antiparallel subunit model. (48/13503)

The objective of this study was to test a new model for the homodimeric animal FAS which implies that the condensation reaction can be catalyzed by the amino-terminal beta-ketoacyl synthase domain in cooperation with the penultimate carboxyl-terminal acyl carrier protein domain of either subunit. Treatment of animal fatty acid synthase dimers with dibromopropanone generates three new molecular species with decreased electrophoretic mobilities; none of these species are formed by fatty acid synthase mutant dimers lacking either the active-site cysteine of the beta-ketoacyl synthase domain (C161A) or the phosphopantetheine thiol of the acyl carrier protein domain (S2151A). A double affinity-labeling strategy was used to isolate dimers that carried one or both mutations on one or both subunits; the heterodimers were treated with dibromopropanone and analyzed by a combination of sodium dodecyl sulfate/polyacrylamide gel electrophoresis, Western blotting, gel filtration, and matrix-assisted laser desorption mass spectrometry. Thus the two slowest moving of these species, which accounted for 45 and 15% of the total, were identified as doubly and singly cross-linked dimers, respectively, whereas the fastest moving species, which accounted for 35% of the total, was identified as originating from internally cross-linked subunits. These results show that the two polypeptides of the fatty acid synthase are oriented such that head-to-tail contacts are formed both between and within subunits, and provide the first structural evidence in support of the new model.  (+info)