Gbeta5 prevents the RGS7-Galphao interaction through binding to a distinct Ggamma-like domain found in RGS7 and other RGS proteins. (17/13503)

The G protein beta subunit Gbeta5 deviates significantly from the other four members of Gbeta-subunit family in amino acid sequence and subcellular localization. To detect the protein targets of Gbeta5 in vivo, we have isolated a native Gbeta5 protein complex from the retinal cytosolic fraction and identified the protein tightly associated with Gbeta5 as the regulator of G protein signaling (RGS) protein, RGS7. Here we show that complexes of Gbeta5 with RGS proteins can be formed in vitro from the recombinant proteins. The reconstituted Gbeta5-RGS dimers are similar to the native retinal complex in their behavior on gel-filtration and cation-exchange chromatographies and can be immunoprecipitated with either anti-Gbeta5 or anti-RGS7 antibodies. The specific Gbeta5-RGS7 interaction is determined by a distinct domain in RGS that has a striking homology to Ggamma subunits. Deletion of this domain prevents the RGS7-Gbeta5 binding, although the interaction with Galpha is retained. Substitution of the Ggamma-like domain of RGS7 with a portion of Ggamma1 changes its binding specificity from Gbeta5 to Gbeta1. The interaction of Gbeta5 with RGS7 blocked the binding of RGS7 to the Galpha subunit Galphao, indicating that Gbeta5 is a specific RGS inhibitor.  (+info)

Purification and characterization of a mitochondrial thymine glycol endonuclease from rat liver. (18/13503)

Mitochondrial DNA is exposed to oxygen radicals produced during oxidative phosphorylation. Accumulation of several kinds of oxidative lesions in mitochondrial DNA may lead to structural genomic alterations, mitochondrial dysfunction, and associated degenerative diseases. The pyrimidine hydrate thymine glycol, one of many oxidative lesions, can block DNA and RNA polymerases and thereby exert negative biological effects. Mitochondrial DNA repair of this lesion is important to ensure normal mitochondrial DNA metabolism. Here, we report the purification of a novel rat liver mitochondrial thymine glycol endonuclease (mtTGendo). By using a radiolabeled oligonucleotide duplex containing a single thymine glycol lesion, damage-specific incision at the modified thymine was observed upon incubation with mitochondrial protein extracts. After purification using cation exchange, hydrophobic interaction, and size exclusion chromatography, the most pure active fractions contained a single band of approximately 37 kDa on a silver-stained gel. MtTGendo is active within a broad KCl concentration range and is EDTA-resistant. Furthermore, mtTGendo has an associated apurinic/apyrimidinic-lyase activity. MtTGendo does not incise 8-oxodeoxyguanosine or uracil-containing duplexes or thymine glycol in single-stranded DNA. Based upon functional similarity, we conclude that mtTGendo may be a rat mitochondrial homolog of the Escherichia coli endonuclease III protein.  (+info)

Polyol formation and NADPH-dependent reductases in dog retinal capillary pericytes and endothelial cells. (19/13503)

PURPOSE: Dogs fed a diet containing 30% galactose experience retinal vascular changes similar to those in human diabetic retinopathy, with selective pericyte loss as an initial lesion. In the present study the relationship among reduced nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reductases, polyol formation, and flux through the polyol pathway in cultured dog retinal capillary cells were investigated. METHODS: Pericytes and endothelial cells were cultured from retina of beagle dogs. NADPH-dependent reductases were characterized by chromatofocusing after gel filtration. Sugars in cultured cells were analyzed by gas chromatography, and flux through the polyol pathway was investigated by 19F nuclear magnetic resonance (NMR) with 3-fluoro-3-deoxy-D-glucose (3FG) as a substrate. The presence of aldose reductase and sorbitol dehydrogenase in these cells was examined by northern blot analysis. RESULTS: Two distinct peaks corresponding to aldose reductase and aldehyde reductase, the latter being dominant, were observed in pericytes by chromatofocusing. Culture in medium containing either 10 mM D-galactose or 30 mM D-glucose resulted in the accumulation of sugar alcohol in pericytes that was markedly reduced by aldose reductase inhibitors. 19F NMR spectra obtained from pericytes cultured for 5 days in medium containing 2 mM 3FG displayed the marked accumulation of 3-fluoro-deoxysorbitol but not 3-fluoro-deoxyfructose. No 3FG metabolism was observed in similarly cultured endothelial cells. With northern blot analysis, aldose reductase was detected in pericytes but not in endothelial cells. Sorbitol dehydrogenase was below the detectable limit in pericytes and endothelial cells. CONCLUSIONS: Aldose, aldehyde, and glyceraldehyde reductases are present in dog retinal capillary pericytes, with aldehyde reductase being the major reductase present. Polyol accumulation easily occurs in pericytes but not in endothelial cells.  (+info)

A multisubunit acetyl coenzyme A carboxylase from soybean. (20/13503)

A multisubunit form of acetyl coenzyme A (CoA) carboxylase (ACCase) from soybean (Glycine max) was characterized. The enzyme catalyzes the formation of malonyl CoA from acetyl CoA, a rate-limiting step in fatty acid biosynthesis. The four known components that constitute plastid ACCase are biotin carboxylase (BC), biotin carboxyl carrier protein (BCCP), and the alpha- and beta-subunits of carboxyltransferase (alpha- and beta-CT). At least three different cDNAs were isolated from germinating soybean seeds that encode BC, two that encode BCCP, and four that encode alpha-CT. Whereas BC, BCCP, and alpha-CT are products of nuclear genes, the DNA that encodes soybean beta-CT is located in chloroplasts. Translation products from cDNAs for BC, BCCP, and alpha-CT were imported into isolated pea (Pisum sativum) chloroplasts and became integrated into ACCase. Edman microsequence analysis of the subunits after import permitted the identification of the amino-terminal sequence of the mature protein after removal of the transit sequences. Antibodies specific for each of the chloroplast ACCase subunits were generated against products from the cDNAs expressed in bacteria. The antibodies permitted components of ACCase to be followed during fractionation of the chloroplast stroma. Even in the presence of 0.5 M KCl, a complex that contained BC plus BCCP emerged from Sephacryl 400 with an apparent molecular mass greater than about 800 kD. A second complex, which contained alpha- and beta-CT, was also recovered from the column, and it had an apparent molecular mass of greater than about 600 kD. By mixing the two complexes together at appropriate ratios, ACCase enzymatic activity was restored. Even higher ACCase activities were recovered by mixing complexes from pea and soybean. The results demonstrate that the active form of ACCase can be reassembled and that it could form a high-molecular-mass complex.  (+info)

Ruminant placental lactogens act as antagonists to homologous growth hormone receptors and as agonists to human or rabbit growth hormone receptors. (21/13503)

Growth hormone receptor (GHR)-mediated activity of ruminant placental lactogens (PLs) and ovine (o) GH was compared, using cells transfected with full size human (h), rabbit (rb), and oGHRs. All three PLs acted as agonists in heterologous bioassays, whereas in homologous bioassays in cells transfected with oGHRs they antagonized the oGH activity. Despite these differences, oGH and PLs bound with similar affinity to the oGHR extracellular domain (oGHR-ECD), indicating that the binding occurs through hormone site I. Gel filtration of complexes between oPL and oGHR-ECD showed a 1:1 stoichiometry, confirming this conclusion. The oPL T185D and bPL T188D, which exhibited weak biological activity mediated through GHRs, behaved as site I antagonists, whereas oPL G130R and bPL G133R formed a 1:1 complex with GHR-ECDs and bound to h/rb/oGHR-ECDs with affinity similar to that of wild-type oPL. They had no agonistic activity in all models transfected with h/rb and oGHRs, but were antagonistic to all of them. In conclusion, ruminant PLs antagonize the activity of oGH in homologous systems, because they cannot homodimerize oGHRs, whereas in heterologous systems they act as agonists. The structural analysis hints that minor differences in the sequence of the GHR-ECDs may account for this difference. Since the initial step in the activity transduced through cytokine/hemapoietic receptors family is receptor homodimerization or heterodimerization, we suggest that the question of homologous versus heterologous interactions should be reexamined.  (+info)

Immunoreactive pancreatic Reg protein in sera from cystic fibrosis patients with and without pancreatic insufficiency. (22/13503)

BACKGROUND: The biological function of the Reg protein, a non-enzymic protein produced in fairly large amounts by pancreatic acinar cells, remains elusive. Its susceptibility to proteolysis leading to precipitation of the proteolysis product at neutral pH suggests that it could contribute to the protein plugging observed in cystic fibrosis (CF). AIMS: To study its behaviour in the serum of CF patients with or without pancreatic insufficiency and to compare it with that of other pancreatic secretory proteins. PATIENTS: 170 patients (93 with CF, 55 controls, and 22 with chronic pancreatitis) were studied. METHODS: Reg protein was measured using a specific enzyme immunoassay and its molecular form in CF sera was characterised by gel filtration. Molecular gene expression was investigated by dot-blot hybridisation. RESULTS: Reg protein was present in all CF sera studied from patients with or without pancreatic insufficiency, and in all cases the level was significantly higher than in controls. Its chromatographic behaviour in CF sera was identical with that of the protein present in normal serum. No correlation was found between the levels of Reg protein and trypsin(ogen) (or lipase) in CF, nor in control sera or normal pancreatic juice. Molecular gene expression of the corresponding proteins investigated in pancreatic tissues showed an absence of correlation between the mRNA levels. CONCLUSIONS: Reg protein may not be a secretory exocrine protein like the digestive enzymes but rather a hormone-like secretory substance with an endocrine or paracrine function.  (+info)

Electric birefringence of recombinant spectrin segments 14, 14-15, 14-16, and 14-17 from Drosophila alpha-spectrin. (23/13503)

Members of the spectrin protein family can be found in many different cells and organisms. In all cases studied, the major functional role of these proteins is believed to be structural rather than enzymatic. All spectrin proteins are highly elongated and consist mainly of homologous repeats that constitute rigid segments connected in tandem. It is commonly believed that the details of the spectrin function depend critically on the flexibility of the links between the segments. Here we report on a work addressing this question by studying the transient electric birefringence of recombinant spectrin fragments consisting of segments 14, 14-15, 14-16, and 14-17, respectively, from Drosophila alpha-spectrin. Transient electric birefringence depends sharply on both molecular length and flexibility. We found that the birefringence relaxation time of segment 14 measured at 4 degrees C, but scaled to what is expected at 20 degrees C, equals 16 ns (+/-15%) at pH 7.5 and ionic strength 6 mM. This is consistent with this single segment being rigid, 5 nm long and having an axial ratio equal to about two. Under the same conditions, segments 14-15, 14-16 and 14-17 show relaxation times of 45, 39 and 164 ns (all +/-20%), respectively, scaled to what is expected at 20 degrees C. When the temperature is increased to 37 degrees C the main relaxation time for each of these multisegment fragments, scaled to what is expected at 20 degrees C, increased to 46, 80, and 229 ns (all +/-20%), respectively. When the ionic strength and the Debye shielding is low, the dynamics of these short fragments even at physiological temperature is nearly the same as for fully extended weakly bending rods with the same lengths and axial ratios. When the ionic strength is increased to 85 mM, the main relaxation time for each of these multisegment fragments is reduced 20-50% which suggests that at physiological salt and temperature conditions the links in 2-4-segment-long fragments exhibit significant thermally induced flexing. Provided that the recombinant spectrin fragments can serve as a model for native spectrin, this implies that, at physiological conditions, the overall conformational dynamics of a native spectrin protein containing 20-40 segments equals that of a flexible polymer.  (+info)

Arginase from human full-term placenta. (24/13503)

Arginase was purified about 1800-fold from extracts of human full-term placenta; the enzyme appeared to be homogenous by disc electrophoresis and molecular-sieve chromatography. The mol. wt. determination by gel filtration and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis yielded a value of 70000 for the most pure and the partially purified enzyme. The human placenta arginase is a metalloenzyme with an optimum pH of 9.1. The Km for L-arginine is 27 mM. L-Ornithine and L-lysine show competitive inhibition with Ki values of 6.3 and 14 mM respectively.  (+info)