Loading...
(1/13503) The isolation and partial characterization of the serum lipoproteins and apolipoproteins of the rainbow trout.

1. VLD (very-low-density), LD (low-density) and HD (high-density) lipoproteins were isolated from the serum of trout (Salmo gairdneri Richardson). 2. Each lipoprotein class resembled that of the human in immunological reactivity, electrophoretic behaviour and appearance in the electron microscope. Trout LD lipoprotein, however, was of greater density than human LD lipoprotein. 3. The trout lipoproteins have lipid compositions which are similar to those of the corresponding human components, except for their high contents of long-chain unsaturated fatty acids. 4. HD and LD lipoproteins were immunologically non-identical, whereas LD lipoproteins possessed antigenic determinants in common with VLD lipoproteins. 5. VLD and HD lipoproteins each contained at least seven different apoproteins, whereas LD liprotein was composed largely of a single apoprotein which resembled human apolipoprotein B. 6. At least one, and possibly three, apoprotein of trout HD lipoprotein showed features which resemble human apoprotein A-1.7. The broad similarity between the trout and human lipoprotein systems suggests that both arose from common ancestral genes early in evolutionary history.  (+info)

(2/13503) A protein-glucan intermediate during paramylon synthesis.

A sodium deoxycholate extract containing glucosyltransferase activity was obtained from a particulate preparation from Euglena gracilis. It transferred glucose from UDP-[14C]glucose into material that was precipitated by trichloroacetic acid. This material released beta-(1 leads to 3)-glucan oligosaccharides into solution on incubation with weak acid, weak alkali and beta-(1 leads to 3)-glucosidase. The products of the incubation of the deoxycholate extract with UDP-[14C]glucose were analysed by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. Radioactive bands were obtained that had the properties of beta-(1 leads to 3)-glucan covalently linked to protein by a bond labile to weak acid. High-molecular-weight material containing a beta-(1 leads to 3)-glucan was also shown to be present by gel filtration. The bond linking glucan to aglycone is possibly a pyrophosphate linkage. It is proposed that in Euglena gracilis beta-(1 leads to 3)-glucan (paramylon) is synthesized on a protein primer.  (+info)

(3/13503) Axin prevents Wnt-3a-induced accumulation of beta-catenin.

When Axin, a negative regulator of the Wnt signaling pathway, was expressed in COS cells, it coeluted with glycogen synthase kinase-3beta (GSK-3beta), beta-catenin, and adenomatous polyposis coli protein (APC) in a high molecular weight fraction on gel filtration column chromatography. In this fraction, GSK-3beta, beta-catenin, and APC were co-precipitated with Axin. Although beta-catenin was detected in the high molecular weight fraction in L cells on gel filtration column chromatography, addition of conditioned medium expressing Wnt-3a to the cells increased beta-catenin in the low molecular weight fraction. However, Wnt-3a-dependent accumulation of beta-catenin was greatly inhibited in L cells stably expressing Axin. Axin also suppressed Wnt-3a-dependent activation of Tcf-4 which binds to beta-catenin and acts as a transcription factor. These results suggest that Axin forms a complex with GSK-3beta, beta-catenin, and APC, resulting in the stimulation of the degradation of beta-catenin and that Wnt-3a induces the dissociation of beta-catenin from the Axin complex and accumulates beta-catenin.  (+info)

(4/13503) Isolation and complete covalent structure of liver microsomal paraoxonase.

Paraoxonase (PON1) is a serum esterase exclusively associated with high-density lipoproteins; it might confer protection against coronary artery disease by destroying pro-inflammatory oxidized lipids in oxidized low-density lipoproteins. Here I show that rabbit liver microsomes contain a PON analogue (MsPON) and report the isolation and complete covalent structure of MsPON. In detergent-solubilized microsomes, MsPON co-purifies with the microsomal triacylglycerol transfer protein (MTP) complex. MsPON was separated from the complex and purified to homogeneity under non-denaturing conditions. Automated sequence analysis of intact MsPON and peptides obtained from enzymic and chemical cleavages led to the elucidation of the complete covalent structure of MsPON. The protein is a single polypeptide consisting of 350 residues. The sequence of rabbit liver microsomal MsPON is 60% identical with that of rabbit serum PON1, and 84% identical with the sequence predicted by a human cDNA of unknown function, designated PON3. MsPON has a hydrophobic segment at the N-terminus that might serve to anchor the protein to the microsomal membrane or to the MTP complex. Unlike in the serum enzyme, two potential N-glycan acceptor sites in MsPON are not glycosylated. An absence of N-glycans was also indicated in the rabbit liver MTP. MsPON has a single free cysteine residue at position 38 and a disulphide bond between Cys-279 and Cys-348. The microsomal enzyme lacks three residues at the N-terminus that are present in the serum protein. MsPON lacks four residues at the C-terminus that are present in the rabbit serum protein but absent from human serum PON1. On the basis of the observation that MsPON displays a high degree of similarity with serum PON1, it is proposed that MsPON might have a function related to that of PON1 in serum high-density lipoprotein complexes.  (+info)

(5/13503) Simultaneous antisense inhibition of two starch-synthase isoforms in potato tubers leads to accumulation of grossly modified amylopectin.

A chimaeric antisense construct was used to reduce the activities of the two major starch-synthase isoforms in potato tubers simultaneously. A range of reductions in total starch-synthase activities were found in the resulting transgenic plants, up to a maximum of 90% inhibition. The reduction in starch-synthase activity had a profound effect on the starch granules, which became extremely distorted in appearance compared with the control lines. Analysis of the starch indicated that the amounts produced in the tubers, and the amylose content of the starch, were not affected by the reduction in activity. In order to understand why the starch granules were distorted, amylopectin was isolated and the constituent chain lengths analysed. This indicated that the amylopectin was very different to that of the control. It contained more chains of fewer than 15 glucose units in length, and fewer of between 15 and 80 glucose units. In addition, the amylopectin contained more very long chains. Amylopectin from plants repressed in just one of the activities of the two starch-synthase isoforms, which we have reported upon previously, were also analysed. Using a technique different to that used previously we show that both isoforms also affect the amylopectin, but in a way that is different to when both isoforms are repressed together.  (+info)

(6/13503) Purification and characterization of an alpha-galactosyltransferase from Trypanosoma brucei.

A membrane-associated galactosyltransferase from Trypanosoma brucei was purified 34000-fold by affinity chromatography on UDP-hexanolamine-Sepharosetrade mark. Using SDS/PAGE under reducing conditions, the isolated enzyme ran as a relatively broad band with apparent molecular masses of 53 kDa and 52 kDa, indicative of glycosylation and the existence of two isoforms. N-Glycosylation of the enzyme was subsequently confirmed using Western blotting and either specific binding of concanavalin A or peptide-N4-(N-acetylglucosaminyl)asparagine amidase digestion. The de-N-glycosylated enzyme ran with apparent molecular masses of 51 kDa and 50 kDa, indicative of a single N-glycosylation site. The galactosyltransferase exhibited a pH optimum at 7.2 and had a pronounced requirement for Mn2+ ions (KM=2.5 mM) for its action. The transferase activity was independent of the concentration of Triton X-100. The enzyme was capable of transferring galactose from UDP-galactose to a variety of galactose-based acceptors in alpha-glycosidic linkages. The apparent KM values for UDP-galactose and for the preferred acceptor substrate N-acetyl-lactosamine are 46 microM and 4.5 mM respectively. From these results we would like to suggest that the galactosyltransferase functions in the processing of terminal N-acetyl-lactosamine structures of trypanosomal glycoproteins.  (+info)

(7/13503) Biophysical characterization of the structure of the amino-terminal region of gp41 of HIV-1. Implications on viral fusion mechanism.

A peptide of 51 amino acids corresponding to the NH2-terminal region (5-55) of the glycoprotein gp41 of human immunodeficiency virus type 1 was synthesized to study its conformation and assembly. Nuclear magnetic resonance experiments indicated the sequence NH2-terminal to the leucine zipper-like domain of gp41 was induced into helix in the micellar solution, in agreement with circular dichroism data. Light scattering experiment showed that the peptide molecules self-assembled in water into trimeric structure on average. That the peptide molecules oligomerize in aqueous solution was supported by gel filtration and diffusion coefficient experiments. Molecular dynamics simulation based on the NMR data revealed a flexible region adjacent to the hydrophobic NH2 terminus of gp41. The biological significance of the present findings on the conformational flexibility and the propensity of oligomerization of the peptide may be envisioned by a proposed model for the interaction of gp41 with membranes during fusion process.  (+info)

(8/13503) Purification and identification of a novel subunit of protein serine/threonine phosphatase 4.

The catalytic subunit of protein serine/threonine phosphatase 4 (PP4C) has greater than 65% amino acid identity to the catalytic subunit of protein phosphatase 2A (PP2AC). Despite this high homology, PP4 does not appear to associate with known PP2A regulatory subunits. As a first step toward characterization of PP4 holoenzymes and identification of putative PP4 regulatory subunits, PP4 was purified from bovine testis soluble extracts. PP4 existed in two complexes of approximately 270-300 and 400-450 kDa as determined by gel filtration chromatography. The smaller PP4 complex was purified by sequential phenyl-Sepharose, Source 15Q, DEAE2, and Superdex 200 gel filtration chromatographies. The final product contained two major proteins: the PP4 catalytic subunit plus a protein that migrated as a doublet of 120-125 kDa on SDS-polyacrylamide gel electrophoresis. The associated protein, termed PP4R1, and PP4C also bound to microcystin-Sepharose. Mass spectrometry analysis of the purified complex revealed two major peaks, at 35 (PP4C) and 105 kDa (PP4R1). Amino acid sequence information of several peptides derived from the 105 kDa protein was utilized to isolate a human cDNA clone. Analysis of the predicted amino acid sequence revealed 13 nonidentical repeats similar to repeats found in the A subunit of PP2A (PP2AA). The PP4R1 cDNA clone engineered with an N-terminal Myc tag was expressed in COS M6 cells and PP4C co-immunoprecipitated with Myc-tagged PP4R1. These data indicate that one form of PP4 is similar to the core complex of PP2A in that it consists of a catalytic subunit and a "PP2AA-like" structural subunit.  (+info)