Identification of AUF-1 ligands reveals vast diversity of early response gene mRNAs. (9/9384)

Cell activation is associated with diverse and widespread changes in gene expression at both the transcriptional and post-transcriptional levels. AUF1 is a recently described cytoplasmic protein which likely participates in the post-transcriptional regulation (PTR) of AU-rich (ARE) mRNAs including those coding for cytokines and proto-oncogenes. Individual mRNAs subject to AUF1-mediated PTR can be predicted if AREs are present or the mRNA in question interacts in vitro or in vivo with AUF1. However, there are few, if any, general approaches for characterizing the overall repertoire of mRNAs subject to PTR by AUF1. In an effort to identify these mRNAs, we incubated total mRNA from mitogen-activated peripheral blood mono-nuclear cells (PBMCs) with AUF1 in vitro. AUF1-mRNA complexes were retarded on membranes, bound mRNAs eluted with high salt, and either used to generate a cDNA library or rebound to AUF1 a second or third time prior to elution and cDNA library construction. We have obtained partial nucleotide sequences from 130 clones which shows that the AUF1 selected libraries are rich in mRNAs containing 3' untranslated region AREs including a large number of early response gene cDNAs. As a test of the validity of this method, we also show that a randomly selected, novel mRNA contained in the library is stabilized upon cell activation.  (+info)

An allosteric synthetic DNA. (10/9384)

Allosteric DNA oligonucleotides are potentially useful diagnostic reagents. Here we develop a model system for the study of allosteric interactions in DNAs. A DNA that binds either Cibacron blue or cholic acid was isolated and partially characterized. Isolation was performed using a multi-stage SELEX. First, short oligos that bind either Cibacron blue or cholic acid were enriched from random oligonucleotide pools. Then, members of the two pools were fused to form longer oligos, which were then selected for theability to bind Cibacron blue columns and elute with cholic acid. One resulting isolate (A22) was studied. Dye- and cholate-binding functions can be separated on sequences from the 5'- and 3'-regions, respectively. Ligand-column affinity assays indicate that each domain binds only its respective ligand. However, the full-length A22 will bind either dye or cholate columns and elute with the other ligand, as if binding by the ligands is mutually exclusive. Furthermore, S1 nuclease protection assays show that Cibacron blue causes a structural change in A22 and that cholic acid inhibits this change. This system will be useful for elucidating mechanisms of allosteric interactions in synthetic DNAs.  (+info)

3-Hydroxylaminophenol mutase from Ralstonia eutropha JMP134 catalyzes a Bamberger rearrangement. (11/9384)

3-Hydroxylaminophenol mutase from Ralstonia eutropha JMP134 is involved in the degradative pathway of 3-nitrophenol, in which it catalyzes the conversion of 3-hydroxylaminophenol to aminohydroquinone. To show that the reaction was really catalyzed by a single enzyme without the release of intermediates, the corresponding protein was purified to apparent homogeneity from an extract of cells grown on 3-nitrophenol as the nitrogen source and succinate as the carbon and energy source. 3-Hydroxylaminophenol mutase appears to be a relatively hydrophobic but soluble and colorless protein consisting of a single 62-kDa polypeptide. The pI was determined to be at pH 4.5. In a database search, the NH2-terminal amino acid sequence of the undigested protein and of two internal sequences of 3-hydroxylaminophenol mutase were found to be most similar to those of glutamine synthetases from different species. Hydroxylaminobenzene, 4-hydroxylaminotoluene, and 2-chloro-5-hydroxylaminophenol, but not 4-hydroxylaminobenzoate, can also serve as substrates for the enzyme. The enzyme requires no oxygen or added cofactors for its reaction, which suggests an enzymatic mechanism analogous to the acid-catalyzed Bamberger rearrangement.  (+info)

Fructose 1,6-bisphosphate aldolase is a heparin-binding protein. (12/9384)

Proteins with affinity to heparin under physiological conditions were isolated from bovine cerebral cortex. First, the extract of cerebral cortex was applied to a chondroitin polysulfate column under physiological conditions. Then, the pass-through fraction was applied to a heparin column. Among the bands on SDS polyacrylamide gel electrophoresis of the fraction bound to the heparin column, the major one was identified as fructose 1,6-bisphosphate aldolase (FPA), a cytosolic enzyme involved in the glycolytic pathway. The results indicated that FPA is a heparin-binding protein which exhibits no affinity to chondroitin polysulfate. The results of affinity chromatographies revealed that FPA binds to intact heparin and modified heparins desulfated at C2 OH of the iduronic acid residue or at C6 OH or C2 NH2 of the glucosamine residue. When 6-O-desulfated heparin was employed as the affinity ligand, a single peak having FPA activity was isolated from the extract of bovine cerebral cortex. By further Mono Q chromatography and Superdex gel-filtration, five isoenzymes were purified with more than 50% recovery. These isoenzymes were identified as FPA A4, A3C1, A2C2, A1C3, and C4 by native electrophoresis with and without 4 M urea and subsequent amino acid sequence analysis. The use of 6-O-desulfated heparin affinity chromatography thus facilitated the purification of FPA.  (+info)

Three distinct anti-allergic drugs, amlexanox, cromolyn and tranilast, bind to S100A12 and S100A13 of the S100 protein family. (13/9384)

To investigate the roles of calcium-binding proteins in degranulation, we used three anti-allergic drugs, amlexanox, cromolyn and tranilast, which inhibit IgE-mediated degranulation of mast cells, as molecular probes in affinity chromatography. All of these drugs, which have different structures but similar function, scarcely bound to calmodulin in bovine lung extract, but bound to the same kinds of calcium-binding proteins, such as the 10-kDa proteins isolated in this study, calcyphosine and annexins I-V. The 10-kDa proteins obtained on three drug-coupled resins and on phenyl-Sepharose were analysed by reversed-phase HPLC. It was found that two characteristic 10-kDa proteins, one polar and one less polar, were bound with all three drugs, although S100A2 (S100L), of the S100 family, was bound with phenyl-Sepharose. The cDNA and deduced amino acid sequence proved our major polar protein to be identical with the calcium-binding protein in bovine amniotic fluid (CAAF1, S100A12). The cDNA and deduced amino acid sequence of the less-polar protein shared 95% homology with human and mouse S100A13. In addition, it was demonstrated that the native S100A12 and recombinant S100A12 and S100A13 bind to immobilized amlexanox. On the basis of these findings, we speculate that the three anti-allergic drugs might inhibit degranulation by binding with S100A12 and S100A13.  (+info)

Purification of A1 adenosine receptor-G-protein complexes: effects of receptor down-regulation and phosphorylation on coupling. (14/9384)

We examined the effects of exposing A1 adenosine receptors (A1ARs) to an agonist on the stability and phosphorylation state of receptor-guanine nucleotide-binding regulatory protein (R-G-protein) complexes. Non-denatured recombinant human A1ARs extended on the N-terminus with hexahistidine (His6) and the FLAG (Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Lys) epitope (H/F) were purified to near homogeneity from stably transfected Chinese-hamster ovary (CHO)-K1 cells. Purified receptors have pharmacological properties similar to receptors in membranes. G-proteins were co-purified with 15+/-2% of H/F-A1AR unless receptor-G-protein (R-G) complexes were uncoupled by pre-treating cell membranes with GTP. By silver staining, purified A1AR-G-protein complexes contain receptors, G-protein alpha and beta subunits and an unidentified 97 kDa protein. Pretreating intact cells with N6-cyclopentyladenosine (CPA) for 24 h decreased both the total number of receptors measured in membranes and the number of purified A1ARs by about 50%. In contrast, pretreating cells with CPA decreased the number of R-G complexes measured in membranes (54+/-6%) significantly less than it decreased the number of purified R-G complexes (78+/-3%) as detected by 125I-N6-(4-aminobenzyl)adenosine binding or by Western blotting Gialpha2. The effect of CPA to decrease the fraction of receptors purified as R-G complexes was not associated with any change in low-level A1AR phosphorylation (found on serine), or low-level phosphorylation of G-protein alpha or beta subunits or the 97 kDa protein. These experiments reveal a novel aspect of agonist-induced down-regulation, namely a diminished stability of receptor-G-protein complexes that is manifested as uncoupling during receptor purification.  (+info)

No pathophysiologic relationship of soluble biliary proteins to cholesterol crystallization in human bile. (15/9384)

This study explores the pathophysiologic effects of soluble biliary glycoproteins in comparison to mucin gel and cholesterol content on microscopic crystal and liquid crystal detection times as well as crystallization sequences in lithogenic human biles incubated at 37 degrees C. Gallbladder biles from 13 cholesterol gallstone patients were ultracentrifuged and microfiltered (samples I). Total biliary lipids were extracted from portions of samples I, and reconstituted with 0.15 m NaCl (pH 7.0) (samples II). Portions of samples II were supplemented with purified concanavalin A-binding biliary glycoproteins (final concentration = 1 mg/mL) (samples III), or mucin gel (samples IV), respectively, isolated from the same cholesterol gallstone biles. Samples V consisted of extracted biliary lipids from uncentrifuged and unfiltered bile samples reconstituted with 0.15 m NaCl (pH 7.0). Analytic lipid compositions of samples I through IV were identical for individual biles but, as anticipated, samples V displayed significantly higher cholesterol saturation indexes. Detection times of cholesterol crystals and liquid crystals were accelerated in the rank order of samples: IV > V > I = II = III, indicating that total soluble biliary glycoproteins in pathophysiologic concentration had no appreciable effect. Crystallization sequences (D. Q-H. Wang and M. C. Carey. J. Lipid Res. 1996. 37: 606-630; and 2539-2549) were similar among samples I through V. Crystal detection times and numbers of solid cholesterol crystals were accelerated in proportion to added mucin gel and the cholesterol saturation of bile only. For pathophysiologically relevant conditions, our results clarify that mucin gel and cholesterol content, but not soluble biliary glycoproteins, promote cholesterol crystallization in human gallbladder bile.  (+info)

Single copies of subunits d, oligomycin-sensitivity conferring protein, and b are present in the Saccharomyces cerevisiae mitochondrial ATP synthase. (16/9384)

In the mitochondrial ATP synthase (mtATPase) of the yeast Saccharomyces cerevisiae, the stoichiometry of subunits d, oligomycin-sensitivity conferring protein (OSCP), and b is poorly defined. We have investigated the stoichiometry of these subunits by the application of hexahistidine affinity purification technology. We have previously demonstrated that intact mtATPase complexes incorporating a Hex6-tagged subunit can be isolated via Ni2+-nitrilotriacetic acid affinity chromatography (Bateson, M., Devenish, R. J., Nagley, P., and Prescott, M. (1996) Anal. Biochem. 238, 14-18). Strains were constructed in which Hex6-tagged versions of subunits d, OSCP, and b were coexpressed with the corresponding wild-type subunit. This coexpression resulted in a mixed population of mtATPase complexes containing untagged wild-type and Hex6-tagged subunits. The stoichiometry of each subunit was then assessed by determining whether or not the untagged wild-type subunit could be recovered from Ni2+-nitrilotriacetic acid purifications as an integral component of those complexes absorbed by virtue of the Hex6-tagged subunit. As only the Hex6-tagged subunit was recovered from such purifications, we demonstrate that the stoichiometry of subunits d, OSCP, and b in yeast is 1 in each case.  (+info)