Proper metaphase spindle length is determined by centromere proteins Mis12 and Mis6 required for faithful chromosome segregation. (9/802)

High-fidelity chromosome transmission is fundamental in controlling the quality of the cell division cycle. The spindle pole-to-pole distance remains constant from metaphase to anaphase A. We show that fission yeast sister centromere-connecting proteins, Mis6 and Mis12, are required for correct spindle morphogenesis, determining metaphase spindle length. Thirty-five to sixty percent extension of metaphase spindle length takes place in mis6 and mis12 mutants. This may be due to incorrect spindle morphogenesis containing impaired sister centromeres or force unbalance between pulling by the linked sister kinetochores and kinetochore-independent pushing. The mutant spindle fully extends in anaphase, although it is accompanied by drastic missegregation by aberrant sister centromere separation. Hence, metaphase spindle length may be crucial for segregation fidelity. Suppressors of mis12 partly restore normal metaphase spindle length. In mis4 that is defective in sister chromatid cohesion, metaphase spindle length is also long, but anaphase spindle extension is blocked, probably due to the activated spindle checkpoint. Extensive missegregation is caused in mis12 only when Mis12 is inactivated from the previous M through to the following M, an effective way to avoid missegregation in the cell cycle. Mis12 has conserved homologs in budding yeast and filamentous fungi.  (+info)

Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis. (10/802)

A vertebrate securin (vSecurin) was identified on the basis of its biochemical analogy to the Pds1p protein of budding yeast and the Cut2p protein of fission yeast. The vSecurin protein bound to a vertebrate homolog of yeast separins Esp1p and Cut1p and was degraded by proteolysis mediated by an anaphase-promoting complex in a manner dependent on a destruction motif. Furthermore, expression of a stable Xenopus securin mutant protein blocked sister-chromatid separation but did not block the embryonic cell cycle. The vSecurin proteins share extensive sequence similarity with each other but show no sequence similarity to either of their yeast counterparts. Human securin is identical to the product of the gene called pituitary tumor-transforming gene (PTTG), which is overexpressed in some tumors and exhibits transforming activity in NIH 3T3 cells. The oncogenic nature of increased expression of vSecurin may result from chromosome gain or loss, produced by errors in chromatid separation.  (+info)

A central role for cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis. (11/802)

A multisubunit complex, called cohesin, containing Smc1p, Smc3p, Scc1p, and Scc3p, is required for sister chromatid cohesion in mitotic cells. We show here that Smc3p and a meiotic version of Scc1p called Rec8p are required for cohesion between sister chromatids, for formation of axial elements, for reciprocal recombination, and for preventing hyperresection of double-strand breaks during meiosis. Both Rec8p and Smc3p colocalize with chromosome cores independently of synapsis during prophase I and largely disappear from chromosome arms after pachytene but persist in the neighborhood of centromeres until the onset of anaphase II. The eukaryotic cell's cohesion apparatus is required both for the repair of recombinogenic lesions and for chromosome segregation and therefore appears to lie at the heart of the meiotic process.  (+info)

Chromatid cohesion during mitosis: lessons from meiosis. (12/802)

The equal distribution of chromosomes during mitosis and meiosis is dependent on the maintenance of sister chromatid cohesion. In this commentary we review the evidence that, during meiosis, the mechanism underlying the cohesion of chromatids along their arms is different from that responsible for cohesion in the centromere region. We then argue that the chromatids on a mitotic chromosome are also tethered along their arms and in the centromere by different mechanisms, and that the functional action of these two mechanisms can be temporally separated under various conditions. Finally, we demonstrate that in the absence of a centromeric tether, arm cohesion is sufficient to maintain chromatid cohesion during prometaphase of mitosis. This finding provides a straightforward explanation for why mutants in proteins responsible for centromeric cohesion in Drosophila (e.g. ord, mei-s332) disrupt meiosis but not mitosis.  (+info)

Chromosome segregation: Samurai separation of Siamese sisters. (13/802)

How do cells ensure that sister chromatids are precisely partitioned in mitosis? New studies on budding yeast have revealed that sister chromatid separation at anaphase requires endoproteolytic cleavage of a protein that maintains the association between sister chromatids.  (+info)

Structural maintenance of chromosomes (SMC) proteins: conserved molecular properties for multiple biological functions. (14/802)

The evolutionarily-conserved eukaryotic SMC (structural maintenance of chromosomes) proteins are ubiquitous chromosomal components in prokaryotes and eukaryotes. The eukaryotic SMC proteins form two kind of heterodimers: the SMC1/SMC3 and the SMC2/SMC4 types. These heterodimers constitute an essential part of higher order complexes, which are involved in chromatin and DNA dynamics. The two most prominent and best-characterized complexes are cohesin and condensin, necessary for sister chromatid cohesion and chromosome condensation. Here we discuss these functions together with additional roles in gene dosage compensation and DNA recombination.  (+info)

Classic Weinstein: tetrad analysis, genetic variation and achiasmate segregation in Drosophila and humans. (15/802)

A maximum-likelihood method for the estimation of tetrad frequencies from single-spore data is presented. The multilocus exchange with interference and viability (MEIV) model incorporates a clearly defined model of exchange, interference, and viability whose parameters define a multinomial distribution for single-spore data. Maximum-likelihood analysis of the MEIV model (MEIVLA) allows point estimation of tetrad frequencies and determination of confidence intervals. We employ MEIVLA to determine tetrad frequencies among 15 X chromosomes sampled at random from Drosophila melanogaster natural populations in Africa and North America. Significant variation in the frequency of nonexchange, or E(0) tetrads, is observed within both natural populations. Because most nondisjunction arises from E(0) tetrads, this observation is quite unexpected given both the prevalence and the deleterious consequences of nondisjunction in D. melanogaster. Use of MEIVLA is also demonstrated by reanalyzing a recently published human chromosome 21 dataset. Analysis of simulated datasets demonstrates that MEIVLA is superior to previous methods of tetrad frequency estimation and is particularly well suited to analyze samples where the E(0) tetrad frequency is low and sample sizes are small, conditions likely to be met in most samples from human populations. We discuss the implications of our analysis for determining whether an achiasmate system exists in humans to ensure the proper segregation of E(0) tetrads.  (+info)

Phosphorylated proteins are involved in sister-chromatid arm cohesion during meiosis I. (16/802)

Sister-chromatid arm cohesion is lost during the metaphase I/anaphase I transition to allow homologue separation. To obtain needed information on this process we have analysed in grasshopper bivalents the sequential release of arm cohesion in relation to the behaviour of chromatid axes. Results show that sister axes are associated during early metaphase I but separate during late metaphase I leading to a concomitant change of chromosome structure that implies the loss of sister-kinetochore cohesion. Afterwards, homologues initiate their separation asynchronously depending on their size, and number and position of chiasmata. In all bivalents thin chromatin strands at the telomeres appeared as the last point of contact between sister chromatids. Additionally, we have analysed the participation of phosphoproteins recognised by the MPM-2 monoclonal antibody against mitotic phosphoproteins in arm cohesion in bivalents and two different kinds of univalents. Results show the absence of MPM-2 phosphoproteins at the interchromatid domain in mitotic chromosomes and meiotic univalents, but their presence in metaphase I bivalents. These phosphoproteins are lost at the onset of anaphase I. Taken together, these data have prompted us to propose a 'working' model for the release of arm cohesion during meiosis I. The model suggests that MPM-2 phosphoproteins may act as cohesive proteins associating sister axes. Their modification, once all bivalents are correctly aligned at the metaphase plate, would trigger a change of chromosome structure and the sequential release of sister-kinetochore, arm, and telomere cohesions.  (+info)