Hereditary subependymal heterotopia associated with mega cisterna magna: antenatal diagnosis with magnetic resonance imaging. (57/605)

Bilateral nodular subependymal heterotopia has recently been identified as a hereditary disease linked to the X-chromosome. The sonographic findings are very subtle and difficult to observe during the second trimester when the germinal matrix is at its largest. Fetal magnetic resonance imaging facilitates visualization of the periventricular area. We report a case of bilateral nodular heterotopia associated with mega cisterna magna diagnosed by ultrasound and magnetic resonance imaging at 29 weeks' gestation. Magnetic resonance imaging of the brain of the mother revealed similar findings to those observed in the fetus and neonate. This case confirms the association between mega cisterna magna and bilateral periventricular nodular heterotopia and demonstrates that neuroimaging studies of the mother can contribute to the fetal diagnosis.  (+info)

Drosophila homeodomain protein dHb9 directs neuronal fate via crossrepressive and cell-nonautonomous mechanisms. (58/605)

Here we present the identification and characterization of dHb9, the Drosophila homolog of vertebrate Hb9, which encodes a factor central to motorneuron (MN) development. We show that dHb9 regulates neuronal fate by restricting expression of Lim3 and Even-skipped (Eve), two homeodomain (HD) proteins required for development of distinct neuronal classes. Also, dHb9 and Lim3 are activated independently of each other in a virtually identical population of ventrally and laterally projecting MNs. Surprisingly, dHb9 represses Lim3 cell nonautonomously in a subset of dorsally projecting MNs, revealing a novel role for intercellular signaling in the establishment of neuronal fate in Drosophila. Lastly, we provide evidence that dHb9 and Eve regulate each other's expression through Groucho-dependent crossrepression. This mutually antagonistic relationship bears similarity to the crossrepressive relationships between pairs of HD proteins that pattern the vertebrate neural tube.  (+info)

Formation of multiple hearts in mice following deletion of beta-catenin in the embryonic endoderm. (59/605)

Using Cre/loxP, we conditionally inactivated the beta-catenin gene in cells of structures that exhibit important embryonic organizer functions: the visceral endoderm, the node, the notochord, and the definitive endoderm. Mesoderm formation was not affected in the mutant embryos, but the node was missing, patterning of the head and trunk was affected, and no notochord or somites were formed. Surprisingly, deletion of beta-catenin in the definitive endoderm led to the formation of multiple hearts all along the anterior-posterior (A/P) axis of the embryo. Ectopic hearts developed in parallel with the normal heart in regions of ectopic Bmp2 expression. We provide evidence that ablation of beta-catenin in embryonic endoderm changes cell fate from endoderm to precardiac mesoderm, consistent with the existence of bipotential mesendodermal progenitors in mouse embryos.  (+info)

Heterotopic neurons with altered inhibitory synaptic function in an animal model of malformation-associated epilepsy. (60/605)

Children with brain malformations often exhibit an intractable form of epilepsy. Although alterations in cellular physiology and abnormal histology associated with brain malformations has been studied extensively, synaptic function in malformed brain regions remains poorly understood. We used an animal model, rats exposed to methylazoxymethanol (MAM) in utero, featuring loss of lamination and distinct nodular heterotopia to examine inhibitory synaptic function in the malformed brain. Previous in vitro and in vivo studies demonstrated an enhanced susceptibility to seizure activity and neuronal hyperexcitability in these animals. Here we demonstrate that inhibitory synaptic function is enhanced in rats exposed to MAM in utero. Using in vitro hippocampal slices and whole-cell voltage-clamp recordings from visualized neurons, we observed a dramatic prolongation of GABAergic IPSCs onto heterotopic neurons. Spontaneous IPSC decay time constants were increased by 195% and evoked IPSC decay time constants by 220% compared with age-matched control CA1 pyramidal cells; no change in IPSC amplitude or rise time was observed. GABA transport inhibitors (tiagabine and NO-711) prolonged evoked IPSC decay kinetics of control CA1 pyramidal cells (or normotopic cells) but had no effect on heterotopic neurons. Immunohistochemical staining for GABA transporters (GAT-1 and GAT-3) revealed a low level of expression in heterotopic cell regions, suggesting a reduced ability for GABA reuptake at these synapses. Together, our data demonstrate that GABA-mediated synaptic function at heterotopic synapses is altered and suggests that inhibitory systems are enhanced in the malformed brain.  (+info)

Dissection of the cellular and molecular events that position cerebellar Purkinje cells: a study of the math1 null-mutant mouse. (61/605)

Granule cell precursors in the external germinal layer (EGL) of the cerebellum have been proposed to be a major player in the migration and positioning of Purkinje cells through the expression of the Netrin-like receptor Unc5h3 and the extracellular matrix molecule Reelin. To explore the role of the EGL on these processes, we made use of the math1 null-mutant mouse in which the EGL does not form. In the absence of the EGL, we find three populations of ectopic Purkinje cells. First, we find 1% of all Purkinje cells in a supracerebellar position at the dorsal midline. Second, we find 7% of all Purkinje cells in the inferior colliculus, similar to what is seen in the Unc5h3 mutant. Our finding that Unc5h3 expression is not disrupted in these cells supports the proposed role of EGL granule cell precursors in establishing the anterior cerebellar boundary through the expression of Unc5h3. Third, we find 20% of all Purkinje cells positioned deep to the cerebellar cortex as seen in the reeler mutant. However, unlike the reeler mutant, where 5% of the Purkinje cells migrate successfully, we find that in the math1 null that 72% of the Purkinje cells migrate successfully. This finding demonstrates that Purkinje cell migration is not solely dependent on Reelin signaling from the EGL and is likely caused by Reelin signals emanating from the nuclear transitory zone or the ventricular zone, or both.  (+info)

Ectopic pancreas with gastric outlet obstruction: report of two cases and literature review. (62/605)

Ectopic pancreas is a rare entity and is usually an incidental finding in clinical practice. Most patients with an ectopic pancreas are asymptomatic, and if present, symptoms are non-specific according to the site of the lesion and different complications encountered. The most-common site is the stomach, accounting for 25%-38.2% of all patients. An asymptomatic ectopic pancreas is usually of no clinical importance, and there is no surgical indication in such a situation. However if there are complications caused by an ectopic pancreas, a variety of actions becomes necessary. We report 2 cases of ectopic pancreas with gastric outlet obstruction. The first case was a 41-year-old man who suffered from epigastric fullness and dyspepsia for 3 years. Endoscopic examination revealed a submucosal tumor measuring 2.5 cm in diameter in the prepyloric area. The second case was a 53-year-old man, who initially underwent a craniotomy to remove a pituitary adenoma, and laparotomy and duodenorrhaphy due to a perforated peptic ulcer. The postoperative course was not uneventful, and an upper gastrointestinal series showed a 2-cm intramural mass with a mucosal ulcer at the distal antrum. Both cases had symptoms and signs of gastric outlet obstruction, and both cases accepted subtotal gastrectomy with Billroth II anastomosis. A review of the literature revealed few cases of ectopic pancreas with gastric outlet obstruction. An ectopic pancreas must be considered in the differential diagnosis of gastric outlet obstruction.  (+info)

Ectopic posterior pituitary lobe and periventricular heterotopia: cerebral malformations with the same underlying mechanism? (63/605)

BACKGROUND AND PURPOSE: Ectopic posterior pituitary lobe often occurs in children with growth hormone deficiency and is part of the spectrum associated with septo-optic dysplasia. Some cases of septo-optic dysplasia are caused by homozygous mutations in the homeobox gene HESX1, whereas heterozygous mutations are associated with milder phenotypes. To date, HESX1 is the only gene associated with ectopic posterior pituitary lobe. We describe an association between ectopic posterior pituitary lobe and periventricular heterotopia in four children without classic features of septo-optic dysplasia and suggest possible mechanisms on the basis of a review of pituitary embryology and recent molecular genetic advances. METHODS: Among 20 children with ectopic posterior pituitary lobe, four had associated periventricular heterotopia. We herein review the clinical and MR imaging findings of these four children. Mutation screening of HESX1 was performed in two. RESULTS: All four children had growth hormone deficiency. None had visual or neurologic disturbances. MR images showed a range of pituitary appearances, with scattered discrete periventricular heterotopia in each case. Other abnormalities were limited to small suprasellar lipomas and callosal dysgenesis. A heterozygous HESX1 mutation was present in one case. CONCLUSION: The coexistence of ectopic posterior pituitary lobe and periventricular heterotopia suggests they have a common underlying genetic basis that is due to gene expression at different locations and stages of development. The presence of a heterozygous HESX1 mutation in one case suggests this gene is important in the development of both ectopic posterior pituitary lobe and periventricular heterotopia and supports their place in the spectrum of septo-optic dysplasia. Further analysis of HESX1 and other genes in related developmental pathways will elucidate their roles in the development of both malformations.  (+info)

Subcortical band heterotopia (SBH) in males: clinical, imaging and genetic findings in comparison with females. (64/605)

Subcortical band heterotopia (SBH) or double cortex syndrome is a neuronal migration disorder, which occurs very rarely in males: to date, at least 110 females but only 11 in males have been reported. The syndrome is usually associated with mutations in the doublecortin (DCX) (Xq22.3-q23) gene, and much less frequently in the LIS1 (17p13.3) gene. To determine whether the phenotypic spectrum, the genetic basis and genotype-phenotype correlations of SBH in males are similar to those in females, we compared the clinical, imaging and molecular features in 30 personally evaluated males and 60 previously reported females with SBH. Based on the MRI findings, we defined the following band subtypes: partial, involving one or two cerebral lobes; intermediate, involving two lobes and a portion of a third; diffuse, with substantial involvement of three or more lobes; and pachygyria-SBH, in which posterior SBH merges with anterior pachygyria. Karyo typing and mutation analysis of DCX and/or LIS1 were performed in 23 and 24 patients, respectively. The range of clinical phenotypes in males with SBH greatly overlapped that in females. MRI studies revealed that some anatomical subtypes of SBH, such as partial and intermediate posterior, pachygyria-SBH and diffuse bands with posterior predominance, were more frequently or exclusively present in males. Conversely, classical diffuse SBH and diffuse bands with anterior predominance were more frequent in females. Males had either mild or the most severe band subtypes, and these correlated with the over-representation of normal/borderline intelligence and severe mental retardation, respectively. Conversely, females who had predominantly diffuse bands exhibited mostly mild or moderate mental retardation. Seven patients (29%) had missense mutations in DCX; in four, these were germline mutations, whereas in three there was evidence for somatic mosaicism. A germline missense mutation of LIS1 and a partial trisomy of chromosome 9p were identified in one patient (4%) each. One male each had a possible pathogenic intronic base change in both DCX and LIS1 genes. Our study shows that SBH in males is a clinically heterogeneous syndrome, mostly occurring sporadically. The clinical spectrum is similar to that of females with SBH. However, the greater cognitive and neuroradiological heterogeneity and the small number of mutations identified to date in the coding sequences of the DCX and LIS1 genes in males differ from the findings in females. This suggests other genetic mechanisms such as mutations in the non-coding regions of the DCX or LIS1 genes, gonadal or somatic mosaicism, and finally mutations of other genes.  (+info)