HLA-G expression in extravillous trophoblasts is an intrinsic property of cell differentiation: a lesson learned from ectopic pregnancies. (25/382)

Human leukocyte antigen (HLA)-G is a major histocompatibility gene expressed almost exclusively in extravillous trophoblasts at the fetal-maternal interface. HLA-G may play a role in protecting the fetus from attack by the maternal natural killer cells. The extravillous trophoblasts invade the decidua and maternal spiral arteries. The factors which regulate the cell-specific expression of HLA-G are unknown. In this study we asked if HLA-G is expressed in extravillous trophoblasts that develop outside of their normal cellular environment, as in the case of ectopic pregnancies. Since all ectopic pregnancies implant in the absence of underlying decidua we also used a placenta accreta as an experimental control. We found that HLA-G mRNA and protein were expressed in the extravillous trophoblasts in the 13 ectopic specimens studied. In a case of placenta accreta (which develops without decidua basalis and is therefore adherent to the underlying myometrium), HLA-G mRNA and protein were also expressed. These results suggest that HLA-G expression is induced in a cell autonomous manner rather than determined by appropriate environmental cues.  (+info)

Development and polarization of cationic amino acid transporters and regulators in the human placenta. (26/382)

We have investigated L-arginine transport systems in the human placental syncytiotrophoblast across gestation using purified microvillous (MVM) and basal (BM) plasma membrane vesicles. In MVM from first-trimester and term placentas, L-arginine transport was by systems y(+) and y(+)L. In BM (term placentas), however, there was evidence for system y(+)L only. The Michaelis constant of system y(+)L was significantly lower (P < 0.05) in first-trimester compared with term MVM and lower in term MVM compared with BM (P < 0.05). There was no functional evidence for system b(0+) in term MVM or BM. Cationic amino acid transporter (CAT) 1, CAT 4, and 4F2hc were detected using RT-PCR in placentas throughout gestation. rBAT was not detected in term placentas. An approximately 85-kDa and an approximately 135-kDa protein was detected by Western blotting in MVM under reducing and nonreducing conditions, respectively, consistent with the 4F2hc monomer and the 4F2hc-light chain dimer, and their expression was significantly higher (P < 0.05) in term compared with first-trimester MVM. These proteins were not detected in BM despite functional evidence for system y(+)L. These data suggest different roles for 4F2hc in the development and polarization of cationic amino acid transporters in the syncytiotrophoblast.  (+info)

Human cytomegalovirus infection of placental cytotrophoblasts in vitro and in utero: implications for transmission and pathogenesis. (27/382)

Human cytomegalovirus (CMV) is the leading cause of prenatal viral infection. Affected infants may suffer intrauterine growth retardation and serious neurologic impairment. Analysis of spontaneously aborted conceptuses shows that CMV infects the placenta before the embryo or fetus. In the human hemochorial placenta, maternal blood directly contacts syncytiotrophoblasts that cover chorionic villi and cytotrophoblasts that invade uterine vessels, suggesting possible routes for CMV transmission. To test this hypothesis, we exposed first-trimester chorionic villi and isolated cytotrophoblasts to CMV in vitro. In chorionic villi, syncytiotrophoblasts did not become infected, although clusters of underlying cytotrophoblasts expressed viral proteins. In chorionic villi that were infected with CMV in utero, syncytiotrophoblasts were often spared, whereas cytotrophoblasts and other cells of the villous core expressed viral proteins. Isolated cytotrophoblasts were also permissive for CMV replication in vitro; significantly, infection subsequently impaired the cytotrophoblasts' ability to differentiate and invade. These results suggest two possible routes of CMV transmission to the fetus: (i) across syncytiotrophoblasts with subsequent infection of the underlying cytotrophoblasts and (ii) via invasive cytotrophoblasts within the uterine wall. Furthermore, the observation that CMV infection impairs critical aspects of cytotrophoblast function offers testable hypotheses for explaining the deleterious effects of this virus on pregnancy outcome.  (+info)

Alkaline phosphatase histochemistry and biochemistry in the diagnosis of complete hydatidiform mole. (28/382)

The purpose of this study was a complementary method to the diagnosis and prognosis of complete hydatidiform mole (CHM) and differentiate it from the other cases of gestational trophoblatic diseases. This was done by examining the quality and quantity of the total and the placental alkaline phosphatase activity. The ALP in the tissues and sera from 12 patients were compared with 13 control normal non-pregnant and 30 control pregnant females. The enzyme activities were determined by biochemical and histochemical examination. The placental tissues were obtained from uterine curettage, or after delivery which then were frozen in a liquid nitrogen and processed for biochemical study. Cryosections were histochemically stained for ALP and PLAP by the azo coupling method. Isoenzyme specificity was evaluated by heating the tissue at 65 degrees C for 15 min while the including L-phenylalanine (50 mM), D-phenylalanine (50 mM) and L-homoarginine (50 mM) were used for chemical inhibition study. The activity of ALP and PLAP of patients were reduced in comparison with pregnant control group (P<0.05). There was no significant difference between the patients and non-pregnant control (P<0.05) group. The localization of enzyme activities in cryosections of all groups were in the basal, apical, and the cytoplasm of syncytiotrophoblast cells. The ALP in all the groups was thermostable (65 degrees C for 15 min) and was inhibited by L-phenylalanine, but no inhibition was seen with L homoarginine in patients group only. These findings suggest that the PLAP is a useful marker in the diagnosis and prognosis of hydatidiform mole.  (+info)

Leptin modulates extracellular matrix molecules and metalloproteinases: possible implications for trophoblast invasion. (29/382)

Leptin is a circulating hormone which plays an important role in the regulation of energy balance, haemopoiesis and reproduction. Leptin and its receptor (leptin-R) are localized in human placental tissue but their function is not known. In this study we have investigated the expression of leptin and leptin-R in the human placenta with particular attention to extravillous cytotrophoblastic cell islands and cell columns which play a pivotal role in trophoblast invasion and placental growth. We demonstrate that leptin-R immunoreactivity shows a strong expression in the distal extravillous cytotrophoblastic cells of cell columns invading the basal plate, whereas leptin expression is homogeneously expressed in all the cellular components of cell columns. Since the invasive ability of the distally located extravillous cytotrophoblast of cell columns is known to be regulated by a variety of proteases and some extracellular matrix molecules, we tested the influence of leptin on the in-vitro production of matrix metalloproteinase (MMP)-2, MMP-9 and fetal fibronectin (fFN) by cytotrophoblastic cells. We demonstrate that leptin increases, in a dose-dependent manner, the secretion of immunoreactive MMP-2 and fFN and enhances the activity of MMP-9 in cultured cytotrophoblastic cells. Our results suggest that leptin and leptin-R could have a role in the invasive processes of the extravillous cytotrophoblastic cells by modulating the expression of MMPs. In addition, these results provide a foundation for studying pathological conditions characterized by insufficient or excessive trophoblast invasion.  (+info)

Villous sprouting: fundamental mechanisms of human placental development. (30/382)

There is increasing evidence that maldevelopment of the placental villous tree can play an important role in the pathogenesis of various pregnancy diseases. In this review we present the most recent advances of cellular and molecular mechanisms involved in the early formation of chorionic villi. In particular we focus our attention on the structural events during early villous sprouting leading to the formation of the mesenchymal villi which are the forerunners of all other villous types, i.e. immature intermediate villi, stem villi, mature intermediate villi and terminal villi. Early villous sprouting starts as 'hot spots' which are circumscribed areas consisting of highly proliferating cytotrophoblastic and stromal cells. The post-proliferative cytotrophoblastic cells fuse with the overlying syncytium leading to the formation of the trophoblastic sprouts. When villous mesenchyme invades the trophoblastic sprouts, the latter are transformed into villous sprouts. The vascularization of the villous sprouts leads to the formation of the mesenchymal villi, the most basic villous type. This process is repeated throughout pregnancy. We analyse the influence of various extracellular matrix molecules, e.g. tenascin and hyaluronic acid, on the formation of hot spots and mesenchymal villi as well as the transformation of the latter in other villous types. We present a critical survey on the data on vessel formation related to villous sprouting and morphogenesis of mesenchymal villi as well as the expression of various angiogenic factors and their receptors.  (+info)

Placental abnormalities associated with human immunodeficiency virus type 1 infection and perinatal transmission in Bangkok, Thailand. (31/382)

The effects of human immunodeficiency virus (HIV) type 1 on the placenta and the role of the placenta in mother-to-child HIV-1 transmission are not well understood. Placentas from 78 HIV-infected and 158 HIV-uninfected women were examined as part of a prospective perinatal HIV transmission study in Bangkok. HIV-infected women were more likely than HIV-uninfected women to have chorioamnionitis (odds ratio [OR], 2.1; P=.03), placental membrane inflammation (PMI; OR, 2. 7; P=.02), and deciduitis (OR, 2.3; P=.03) and less likely to have villitis (OR, 0.3; P=.02). However, among HIV-infected women, fewer women who transmitted infection to their child had chorioamnionitis (relative risk [RR], 0.2; P=.03), funisitis (RR, 0.4; P=.1), or PMI (RR undefined; P=.03). These findings suggest that, in this population, HIV-infected women are at increased risk for placental membrane inflammatory lesions, but that placental inflammatory lesions are not associated with increased perinatal HIV transmission.  (+info)

A role for the homeobox protein Distal-less 3 in the activation of the glycoprotein hormone alpha subunit gene in choriocarcinoma cells. (32/382)

Synthesis and secretion of chorionic gonadotropin in trophoblast cells of the placenta is required for establishment of early pregnancy in primates. Chorionic gonadotropin is a heterodimeric glycoprotein hormone consisting of alpha and beta subunits. Regulation of the alpha subunit gene within the placenta requires an array of cis elements within the 5'-flanking region of the promoter. Within this array of elements, the junctional regulatory element (JRE) putatively binds a placental-specific transcription factor. The aim of our studies was to determine the identity and role of the transcriptional regulator that binds to the JRE in choriocarcinoma cells (JEG3 cells). Mutations within the JRE resulted in reduction in basal expression of an alpha subunit reporter gene, suggesting that the JRE binding factor was necessary for full basal activity. Using electrophoretic mobility shift assays, we determined that the JRE was capable of serving as a homeobox factor-binding site. The homeobox factor, Distal-less 3 (Dlx 3) was found to be expressed in JEG3 cells and in the trophoblast layer of human chorionic villus but not in a gonadotrope cell line that also expresses the alpha subunit gene. Electrophoretic mobility shift assays revealed that recombinant Dlx 3 could bind specifically to the JRE and endogenous Dlx 3 was present in JRE/JEG3 nuclear protein complexes. Overexpression of Dlx 3 resulted in activation of an alpha subunit reporter gene. A JRE mutation resulted in attenuated activation of the alpha subunit reporter via an adjacent cis element, suggesting that JRE/Dlx 3 interactions may facilitate regulation of the alpha subunit gene at sites immediately upstream of the JRE. Our studies support the conclusion that Dlx 3 is a placental-specific transcriptional regulator that binds to the JRE and contributes to expression of the alpha subunit gene in cells of trophoblast origin.  (+info)