Drosophila dec-1 eggshell proteins are differentially distributed via a multistep extracellular processing and localization pathway. (73/662)

In Drosophila the multilayered eggshell forms during late oogenesis between the oocyte and the overlaying follicle cells. Proper eggshell assembly requires wild-type dec-1 gene function. Alternatively spliced dec-1 transcripts encode three proproteins that are cleaved extracellularly in a stage-specific manner to at least five distinct derivatives. Using polyclonal antibodies raised against fusion proteins containing different regions of the dec-1 proteins, we have localized several dec-1 derivatives in the assembling and completed eggshell. Although all of the dec-1 derivatives are generated in the oocyte proximal vitelline membrane layer, they are differentially distributed in the mature egg. Some derivatives are gradually released from the vitelline membrane and become localized within distinct regions of the chorion, while others are taken up by the oocyte or become concentrated in the endochorionic spaces or cavities. The diverse distributions of the dec-1 derivatives suggest that each derivative plays a distinct role in eggshell assembly. These results also suggest that the vitelline membrane layer, by acting as a transient storage site, may control the availability of molecules active in eggshell assembly and by extension perhaps other follicle cell products important in early embryonic pattern formation.  (+info)

Inhibition of angiogenesis and tumour growth by VEGF121-toxin conjugate: differential effect on proliferating endothelial cells. (74/662)

Vascular endothelial growth factor (VEGF) plays an important role in tumour angiogenesis. VEGF binds to tyrosine kinase receptors, which are expressed almost exclusively on tumour endothelium. Therefore, VEGF can be used to target toxin molecules to tumour vessels for anti-angiogenic therapy. However, recent evidence suggests that VEGF can also bind in an isoform-specific fashion to a newly identified neuropilin-1 (NP-1) receptor. NP-1 is widely expressed in normal tissue and presents a potential target for unwanted toxicity. As a consequence, we investigated whether the VEGF121 isoform, which lacks the NP-1 binding domain, could be used to target toxin polypeptides to tumour vasculature. Treatment of endothelial cells with a VEGF121-diphtheria toxin (DT385) conjugate selectively inhibited proliferating endothelial cells, whereas confluent cultures were completely resistant to the construct. In addition, VEGF121-DT385 conjugate treatment completely prevented tumour cell induced angiogenesis in vivo. Most importantly, the conjugate inhibited tumour growth in athymic mice and induced tumour-specific vascular damage. There was also no apparent toxicity associated with the treatment. Our results suggest that proliferating endothelial cells are highly sensitive to VEGF121-toxin conjugates and that the binding to NP-1 receptors is not necessary for efficient inhibition of tumour growth.  (+info)

Localisation of the DmCdc45 DNA replication factor in the mitotic cycle and during chorion gene amplification. (75/662)

The cdc45 protein was originally identified in Saccharomyces cerevisiae and shown to be essential for initiation of eukaryotic DNA replication. Subsequent isolation and characterisation of the corresponding genes from fission yeast, Xenopus and mammals also support a replication role for the protein in these species. They further suggest that during the course of its function cdc45 interacts with a number of other replication proteins, including minichromosome maintenance proteins, the origin recognition complex and DNA polymerase alpha. We have cloned the gene coding for cdc45 protein from Drosophila melanogaster. We have analysed the expression pattern of the cdc45 protein throughout the cell cycle and the life cycle using a combination of indirect immunofluorescence and subcellular fractionation. Our data show that cellular localisation and developmental regulation of the protein is consistent with a role in DNA replication. DmCdc45 is predominantly expressed in proliferating cells. In addition, its subcellular location is nuclear during interphase and the protein shows association with chromatin. The chromatin-associated form of the protein shows a post-translational modification, which may be involved in control of the action of the protein. DmCdc45 shows interactions with mcm proteins, however, the interactions detected show some specificity, perhaps suggesting a preferential association with particular mcm proteins. In addition we show that a stoichiometric mcm interaction may not be obligatory for the function of cdc45 in follicle cell replication, because, unlike the mcm proteins, DmCdc45 localises to the chorion amplification foci in the follicle cells of the ovary.  (+info)

Chorion peroxidase-mediated NADH/O(2) oxidoreduction cooperated by chorion malate dehydrogenase-catalyzed NADH production: a feasible pathway leading to H(2)O(2) formation during chorion hardening in Aedes aegypti mosquitoes. (76/662)

A specific chorion peroxidase is present in Aedes aegypti and this enzyme is responsible for catalyzing chorion protein cross-linking through dityrosine formation during chorion hardening. Peroxidase-mediated dityrosine cross-linking requires H(2)O(2), and this study discusses the possible involvement of the chorion peroxidase in H(2)O(2) formation by mediating NADH/O(2) oxidoreduction during chorion hardening in A. aegypti eggs. Our data show that mosquito chorion peroxidase is able to catalyze pH-dependent NADH oxidation, which is enhanced in the presence of Mn(2+). Molecular oxygen is the electron acceptor during peroxidase-catalyzed NADH oxidation, and reduction of O(2) leads to the production of H(2)O(2), demonstrated by the formation of dityrosine in a NADH/peroxidase reaction mixture following addition of tyrosine. An oxidoreductase capable of catalyzing malate/NAD(+) oxidoreduction is also present in the egg chorion of A. aegypti. The cooperative roles of chorion malate/NAD(+)oxidoreductase and chorion peroxidase on generating H(2)O(2) with NAD(+) and malate as initial substrates were demonstrated by the production of dityrosine after addition of tyrosine to a reaction mixture containing NAD(+) and malate in the presence of both malate dehydrogenase fractions and purified chorion peroxidase. Data suggest that chorion peroxidase-mediated NADH/O(2) oxidoreduction may contribute to the formation of the H(2)O(2) required for chorion protein cross-linking mediated by the same peroxidase, and that the chorion associated malate dehydrogenase may be responsible for the supply of NADH for the H(2)O(2) production.  (+info)

Inhibition of angiogenesis in vivo by plasminogen activator inhibitor-1. (77/662)

The process of angiogenesis is important in both normal and pathologic physiology. However, the mechanisms whereby factors such as basic fibroblast growth factor promote the formation of new blood vessels are not known. In the present study, we demonstrate that exogenously added plasminogen activator inhibitor-1 (PAI-1) at therapeutic concentrations is a potent inhibitor of basic fibroblast growth factor-induced angiogenesis in the chicken chorioallantoic membrane. By using specific PAI-1 mutants with either their vitronectin binding or proteinase inhibitor activities ablated, we show that the inhibition of angiogenesis appears to occur via two distinct but apparently overlapping pathways. The first is dependent on PAI-1 inhibition of proteinase activity, most likely chicken plasmin, while the second is independent of PAI-1's anti-proteinase activity and instead appears to act through PAI-1 binding to vitronectin. Together, these data suggest that PAI-1 may be an important factor regulating angiogenesis in vivo.  (+info)

Changes in the temporal and spatial expression of H beta 58 during formation and maturation of the chorioallantoic placenta in the Rat. (78/662)

Cloning and sequencing of a cDNA amplified by RNA fingerprinting at the implantation site of pregnant rats revealed 80% similarity with H beta 58, previously shown to be essential for formation of the chorioallantoic placenta in the mouse. H beta 58 mRNA was detected in the endometrium of hormonally sensitized rats stimulated to undergo decidualization and in the contralateral uterine horns lacking a decidual stimulus, indicating that uterine expression of H beta 58 mRNA did not require decidualization or the presence of a blastocyst. Immunodetection in the early postimplantation uterus (Days 6-8 of pregnancy) showed H beta 58 localized in the luminal and glandular epithelia and some stromal cells. Decidual cells at Day 6 of pregnancy expressed H beta 58, and by Day 9 of pregnancy, the protein localized throughout the maternal decidua. The temporal and spatial distribution of H beta 58 in the developing chorioallantoic placenta was assessed at Days 10, 12, and 14 of pregnancy. Immunoreactive H beta 58 localized to erythroid cells within the developing fetal vasculature of the chorioallantoic primordia at Day 10 of pregnancy. By Day 12, the fetal vasculature extended into the placental labyrinth, and the erythroid stem cells continued to strongly express H beta 58. At Day 14 of pregnancy, immunoreactivity became evident in the trophoblast giant cells and syncytiotrophoblast of the fetal placenta. As the chorioallantoic placenta matured (Day 18), H beta 58 mRNA was 3.6-fold higher in the labyrinth compared with the junctional region. Stable cell lines (HRP/LRP) isolated from the rat labyrinthine placenta expressed H beta 58 mRNA and protein. The expression pattern of H beta maternal and fetal placental tissues and its early expression in fetal erythroid stem cells during formation and maturation of the chorioallantoic placenta suggest that H beta 58 plays key roles in the regulatory networks that control hematopoietic development and placentation.  (+info)

The number of dichorionic twin pregnancies is reduced by the common MTHFR 677C-->T mutation. (79/662)

In multiple pregnancies, demands for folic acid are considerably increased. The most common inborn error of folate metabolism is mild methylenetetrahydrofolate reductase (MTHFR) deficiency due to the synthesis of a thermolabile variant of the enzyme with impaired catalytic activity which leads to reduced 5-methyltetrahydrofolate (5-methyl-THF) and mildly elevated homocysteine plasma concentrations when folate status is inadequate. To investigate whether the number of offspring is influenced by this mutation, we determined the frequency of the 677C-->T substitution in 156 singleton and 40 twin mothers with dichorionic placentation. The T allele frequency in singleton (0.30) and twin mothers (0.16) was significantly different (P = 0.011). Mothers with the 677C-->T mutation had a 2.28 times lower risk of having a twin pregnancy than those without (95% confidence interval = 1.18-4.66; P = 0.008). Our observation would explain, at least in part, the hereditary trait of multiple gestations and is in agreement with the ethnic distribution pattern of the T allele which has been found to be inversely correlated with the incidence of dichorionic twins. Our findings suggest that the MTHFR 677C-->T mutation interferes with human brood size, probably by influencing the proliferation of rapidly dividing embryonic and maternal cells.  (+info)

I-309 binds to and activates endothelial cell functions and acts as an angiogenic molecule in vivo. (80/662)

Several chemokines have been shown to act as angiogenic molecules or to modulate the activity of growth factors such as fibroblast growth factor 2 (FGF-2) and vascular endothelial growth factor (VEGF). The detection of the CC chemokine receptor (CCR) 8 message in human umbilical vein endothelial cells (HUVECs) by reverse transcription- polymerase chain reaction (RT-PCR) and RNase protection assay (RPA), prompted us to investigate the potential role exerted by the CC chemokine I-309, a known ligand of such receptor, in both in vitro and in vivo angiogenesis assays. We show here that I-309 binds to endothelial cells, stimulates chemotaxis and invasion of these cells, and enhances HUVEC differentiation into capillary-like structures in an in vitro Matrigel assay. Furthermore, I-309 is an inducer of angiogenesis in vivo in both the rabbit cornea and the chick chorioallantoic membrane assay (CAM).  (+info)