Identification and expression of the lamprey Pax6 gene: evolutionary origin of the segmented brain of vertebrates. (49/285)

The Pax6 gene plays a developmental role in various metazoans as the master regulatory gene for eye patterning. Pax6 is also spatially regulated in particular regions of the neural tube. Because the amphioxus has no neuromeres, an understanding of Pax6 expression in the agnathans is crucial for an insight into the origin of neuromerism in the vertebrates. We have isolated a single cognate cDNA of the Pax6 gene, LjPax6, from a Lampetra japonica cDNA library and observed the pattern of its expression using in situ hybridization. Phylogenetic analysis revealed that LjPax6 occurs as an sister group of gnathostome Pax6. In lamprey embryos, LjPax6 is expressed in the eye, the nasohypophysial plate, the oral ectoderm and the brain. In the central nervous system, LjPax6 is expressed in clearly delineated domains in the hindbrain, midbrain and forebrain. We compared the pattern of LjPax6 expression with that of other brain-specific regulatory genes, including LjOtxA, LjPax2/5/8, LjDlx1/6, LjEmx and LjTTF1. Most of the gene expression domains showed conserved pattern, which reflects the situation in the gnathostomes, conforming partly to the neuromeric patterns proposed for the gnathostomes. We conclude that most of the segmented domains of the vertebrate brain were already established in the ancestor common to all vertebrates. Major evolutionary changes in the vertebrate brain may have involved local restriction of cell lineages, leading to the establishment of neuromeres.  (+info)

Environmental fate and biodegradability of benzene derivatives as studied in a model aquatic ecosystem. (50/285)

A model aquatic ecosystem is devised for studying relatively volatile organic compounds and simulating direct discharge of chemical wastes into aquatic ecosystems. Six simple benzene derivatives (aniline, anisole, benzoic acid, chlorobenzene, nitrobenzene, and phthalic anhydride) and other important specialty chemicals: hexachlorobenzene, pentachlorophenol, 2,6-diethylaniline, and 3,5,6-trichloro-2-pyridinol were also chosen for study of environmental behavior and fate in the model aquatic ecosystem. Quantitative relationships of the intrinsic molecular properties of the environmental micropollutants with biological responses are established, e.g., water solubility, partition coefficient, pi constant, sigma constant, ecological magnification, biodegradability index, and comparative detoxication mechanisms, respectively. Water solubility, pi constant, and sigma constant are the most significant factors and control the biological responses of the food chain members. Water solubility and pi constant control the degree of bioaccumulation, and sigma constant limits the metabolism of the xenobiotics via microsomal detoxication enzymes. These highly significant correlations should be useful for predicting environmental fate of organic chemicals.  (+info)

Ci-opsin1, a vertebrate-type opsin gene, expressed in the larval ocellus of the ascidian Ciona intestinalis. (51/285)

A novel gene encoding visual pigment, Ci-opsin1, was identified in a primitive chordate, the ascidian, Ciona intestinalis. Molecular phylogenetic analysis and the exon-intron organization suggest that Ci-opsin1 is closely related to the retinal and pineal opsins of vertebrates. During embryogenesis, Ci-opsin1 transcripts were first detected in part of the brain of mid tailbud embryos; its expression was confined to photoreceptor cells of the ocellus (eye spot) in the larval brain as development proceeded. These results suggest a common descent of the ascidian ocellus and the vertebrate eyes. The ocellus of ascidian larvae may represent an ancestral state of the vertebrate eye.  (+info)

Reconstructing the eyes of Urbilateria. (52/285)

The shared roles of Pax6 and Six homologues in the eye development of various bilaterians suggest that Urbilateria, the common ancestors of all Bilateria, already possessed some simple form of eyes. Here, we re-address the homology of bilaterian cerebral eyes at the level of eye anatomy, of eye-constituting cell types and of phototransductory molecules. The most widespread eye type found in Bilateria are the larval pigment-cup eyes located to the left and right of the apical organ in primary, ciliary larvae of Protostomia and Deuterostomia. They can be as simple as comprising a single pigment cell and a single photoreceptor cell in inverse orientation. Another more elaborate type of cerebral pigment-cup eyes with an everse arrangement of photoreceptor cells is found in adult Protostomia. Both inverse larval and everse adult eyes employ rhabdomeric photoreceptor cells and thus differ from the chordate cerebral eyes with ciliary photoreceptors. This is highly significant because on the molecular level we find that for phototransduction rhabdomeric versus ciliary photoreceptor cells employ divergent rhodopsins and non-orthologous G-proteins, rhodopsin kinases and arrestins. Our comparison supports homology of cerebral eyes in Protostomia; it challenges, however, homology of chordate and non-chordate cerebral eyes that employ photoreceptor cells with non-orthologous phototransductory cascades.  (+info)

New perspectives on the evolution of protochordate sensory and locomotory systems, and the origin of brains and heads. (53/285)

Cladistic analyses generally place tunicates close to the base of the chordate lineage, consistent with the assumption that the tunicate tail is primitively simple, not secondarily reduced from a segmented trunk. Cephalochordates (i.e. amphioxus) are segmented and resemble vertebrates in having two distinct locomotory modes, slow for distance swimming and fast for escape, that depend on separate sets of motor neurons and muscle cells. The sense organs of both amphioxus and tunicate larvae serve essentially as navigational aids and, despite some uncertainty as to homologies, current molecular and ultrastructural data imply a close relationship between them. There are far fewer signs of modification and reduction in the amphioxus central nervous system (CNS), however, so it is arguably the closer to the ancestral condition. Similarities between amphioxus and tunicate sense organs are then most easily explained if distance swimming evolved before and escape behaviour after the two lineages diverged, leaving tunicates to adopt more passive means of avoiding predation. Neither group has the kind of sense organs or sensory integration centres an organism would need to monitor predators, yet mobile predators with eyes were probably important in the early Palaeozoic. For a predator, improvements in vision and locomotion are mutually reinforcing. Both features probably evolved rapidly and together, in an 'arms race' of eyes, brains and segments that left protochordates behind, and ultimately produced the vertebrate head.  (+info)

Developmental genetics in primitive chordates. (54/285)

Recent advances in the study of the genetics and genomics of urochordates testify to a renewed interest in this chordate subphylum, believed to be the most primitive extant chordate relatives of the vertebrates. In addition to their primitive nature, many features of their reproduction and early development make the urochordates ideal model chordates for developmental genetics. Many urochordates spawn large numbers of transparent and externally developing embryos on a daily basis. Additionally, the embryos have a defined and well-characterized cell lineage until the end of gastrulation. Furthermore, the genomes of the urochordates have been estimated to be only 5-10% of the size of the vertebrates and to have fewer genes and less genetic redundancy than vertebrates. Genetic screens, which are powerful tools for investigating developmental mechanisms, have recently become feasible due to new culturing techniques in ascidians. Because hermaphrodite ascidians are able to self-fertilize, recessive mutations can be detected in a single generation. Several recent studies have demonstrated the feasibility of applying modern genetic techniques to the study of ascidian biology.  (+info)

Origins of anteroposterior patterning and Hox gene regulation during chordate evolution. (55/285)

All chordates share a basic body plan and many common features of early development. Anteroposterior (AP) regions of the vertebrate neural tube are specified by a combinatorial pattern of Hox gene expression that is conserved in urochordates and cephalochordates. Another primitive feature of Hox gene regulation in all chordates is a sensitivity to retinoic acid during embryogenesis, and recent developmental genetic studies have demonstrated the essential role for retinoid signalling in vertebrates. Two AP regions develop within the chordate neural tube during gastrulation: an anterior 'forebrain-midbrain' region specified by Otx genes and a posterior 'hindbrain-spinal cord' region specified by Hox genes. A third, intermediate region corresponding to the midbrain or midbrain-hindbrain boundary develops at around the same time in vertebrates, and comparative data suggest that this was also present in the chordate ancestor. Within the anterior part of the Hox-expressing domain, however, vertebrates appear to have evolved unique roles for segmentation genes, such as Krox-20, in patterning the hindbrain. Genetic approaches in mammals and zebrafish, coupled with molecular phylogenetic studies in ascidians, amphioxus and lampreys, promise to reveal how the complex mechanisms that specify the vertebrate body plan may have arisen from a relatively simple set of ancestral developmental components.  (+info)

Differential sensitivity to calciseptine of L-type Ca(2+) currents in a 'lower' vertebrate (Scyliorhinus canicula), a protochordate (Branchiostoma lanceolatum) and an invertebrate (Alloteuthis subulata). (56/285)

Voltage-dependent calcium currents in vertebrate (Scyliorhinus canicula), protochordate (Branchiostoma lanceolatum), and invertebrate (Alloteuthis subulata) skeletal and striated muscle were examined under whole-cell voltage clamp. Nifedipine (10 microM) suppressed and cobalt (5 mM) blocked striated/skeletal muscle calcium currents in all of the animals examined, confirming that they are of the L-type class. Calciseptine, a specific blocker of vertebrate cardiac muscle and neuronal L-type calcium currents, was applied (0.2 microM) under whole-cell voltage clamp. Protochordate and invertebrate striated muscle L-type calcium currents were suppressed while up to 4 microM calciseptine had no effect on dogfish skeletal muscle L-type calcium currents. Our results demonstrate the presence of at least two sub-types of L-type calcium current in these different animals, which may be distinguished by their calciseptine sensitivity. We conclude that the invertebrate and protochordate L-type current sub-type that we have examined has properties in common with vertebrate 'cardiac' and 'neuronal' current sub-types, but not the skeletal muscle sub-type of the L-type channel.  (+info)