Amphioxus alcohol dehydrogenase is a class 3 form of single type and of structural conservation but with unique developmental expression. (33/285)

The coding region of amphioxus alcohol dehydrogenase class 3 (ADH3) has been characterized from two species, Branchiostoma lanceolatum and Branchiostoma floridae. The species variants have residue differences at positions that result in only marginal functional distinctions. Activity measurements show a class 3 glutathione-dependent formaldehyde dehydrogenase, with kcat/Km values about threefold those of the human class 3 ADH enzyme. Only a single ADH3 form is identified in each of the two amphioxus species, and no ethanol activity ascribed to other classes is detectable, supporting the conclusion that evolution of ethanol-active ADH classes by gene duplications occurred at early vertebrate radiation after the formation of the amphioxus lineage. Similarly, Southern blot analysis indicated that amphioxus ADH3 is encoded by a single gene present in the methylated fraction of the amphioxus genome and northern blots revealed a single 1.4-kb transcript. In situ experiments showed that amphioxus Adh3 expression is restricted to particular cell types in the embryos. Transcripts were first evident at the neurula stage and then located at the larval ventral region, in the intestinal epithelium. This tissue-specific pattern contrasts with the ubiquitous Adh3 expression in mammals.  (+info)

Phylogenetic analysis of T-Box genes demonstrates the importance of amphioxus for understanding evolution of the vertebrate genome. (34/285)

The duplication of preexisting genes has played a major role in evolution. To understand the evolution of genetic complexity it is important to reconstruct the phylogenetic history of the genome. A widely held view suggests that the vertebrate genome evolved via two successive rounds of whole-genome duplication. To test this model we have isolated seven new T-box genes from the primitive chordate amphioxus. We find that each amphioxus gene generally corresponds to two or three vertebrate counterparts. A phylogenetic analysis of these genes supports the idea that a single whole-genome duplication took place early in vertebrate evolution, but cannot exclude the possibility that a second duplication later took place. The origin of additional paralogs evident in this and other gene families could be the result of subsequent, smaller-scale chromosomal duplications. Our findings highlight the importance of amphioxus as a key organism for understanding evolution of the vertebrate genome.  (+info)

Sensory system evolution at the origin of craniates. (35/285)

The multiple events at the transition from non-craniate invertebrate ancestors to craniates included the gain and/or elaboration of migratory neural crest and neurogenic placodes. These tissues give rise to the peripherally located, bipolar neurons of all non-visual sensory systems. The brain was also elaborated at or about this same time. Were the peripheral and central events simultaneous or sequential? A serial transformation hypothesis postulates that paired eyes and an enlarged brain evolved before the elaboration of migratory neural crest placodal sensory systems. Circumstantial evidence for this scenario is derived from the independent occurrence of the combination of large, paired eyes plus a large, elaborated brain in at least three taxa (cephalochordates, arthropods and craniates) and partly from the exclusivity of the diencephalon for visual system-related distal sensory components versus the restricted distribution of migratory neural crest-placodal sensory systems to the remaining parts of the neuraxis. This scenario accounts for the similarity of all central sensory system pathways due to the primary establishment of descending visual pathways via the diencephalon and midbrain tectum to brainstem motor regions and the subsequent exploitation of the same central beachhead by the migratory neural crest-placodal systems as a template for their organization.  (+info)

Identification and developmental expression of three Distal-less homeobox containing genes in the ascidian Ciona intestinalis. (36/285)

Several homeobox-containing genes related to Drosophila Distal-less (Dll) have been isolated from a wide variety of organisms and have been shown to function as developmental regulators. While in Drosophila only one Dll gene has been described so far, in Vertebrates many components of the Dlx multigenic family have been characterized. This suggests that, during the evolution of the Chordate phylum, the Dlx genes arose from an ancestral Dll/Dlx gene via gene duplication. We have previously reported the isolation of two Dll-related homeoboxes from the protochordate Ciona intestinalis, and described their clustered arrangement (Gene 156 (1995) 253). Here we present the detailed genomic organization and spatial-temporal expression of these two genes, Ci-Dll-A and Ci-Dll-B, and describe the isolation and characterization of another member of the ascidian family of Dll-related genes, which we tentatively named Ci-Dll-C.  (+info)

A phylogenetic tree of the Wnt genes based on all available full-length sequences, including five from the cephalochordate amphioxus. (37/285)

The WNT: gene family is large, and new members are still being discovered. We constructed a parsimony tree for the WNT: family based on all 82 of the full-length sequences currently available. The inclusion of sequences from the cephalochordate amphioxus is especially useful in comprehensive gene trees, because the amphioxus genes in each subfamily often mark the base of the vertebrate diversification. We thus isolated full-length cDNAs of five amphioxus WNT: genes (AmphiWnt1, AmphiWnt4, AmphiWnt7, AmphiWnt8, and AmphiWnt11) for addition to the overall WNT: family tree. The analysis combined amino acid and nucleotide sequences (excluding third codon positions), taking into account 97% of the available data for each sequence. This combinatorial method had the advantage of generating a single most-parsimonious tree that was trichotomy-free. The reliability of the nodes was assessed by both jackknifing and Bremer support (decay index). A regression analysis revealed that branch length was strongly correlated with branch support, and possible reasons for this pattern are discussed. The tree topology suggested that in amphioxus, at least an AmphiWnt5 and an AmphiWnt10 have yet to be discovered.  (+info)

Cell morphology in amphioxus nerve cord may reflect the time course of cell differentiation. (38/285)

Amphioxus embryos elongate following neurulation, and this lengthens the developing nerve cord. Most neurons and support cells remain attached at their apices to the neuroepithelium, and the apices themselves become correspondingly longer. In consequence, apex length can be used in some instances as a measure of whether a given cell last divided before elongation or after, and approximately when. The data indicate that most floorplate, ependymoglial and infundibular cells are generated comparatively early, before most neurons. Among the neurons, the segmentally arranged DC (dorsal compartment) motoneurons appear to be among the first to develop, which accords with molecular data on the time course of neural development, using neurogenin and islet as markers.  (+info)

Developmentally controlled expression patterns of intermediate filament proteins in the cephalochordate Branchiostoma. (39/285)

Expression of cytoplasmic intermediate filament (IF) proteins starts in the gastrula with three keratins (k1, Y1, D1) and protein X1. The number of IF proteins expressed increases at the neurula and early larval stages to seven and 11, respectively, and reaches 13 in the adult. Using antibodies specific for a single IF protein the expression patterns of nine of the 13 IF proteins were analyzed at different developmental stages. Keratin k1 of the larval epidermis is replaced in the juvenile by keratin E1. Protein C1 of the larval epidermis persists only weakly and only in the most ventral part of the adult. While down-regulated in the adult epidermis k1 and C1 are major proteins in the atrial epithelium which forms in the later larva. B1 is currently the only IF protein expressed in mesodermally derived tissues such as the muscle tails and some coelomic epithelia. Two-dimensional gels confirm that keratins are the major IF proteins in the nerve cord. Immunogold electronmicroscopy shows that proteins X1 and C2 are present in epidermis and nerve cord in keratin IF.  (+info)

Evolution of the organizer and the chordate body plan. (40/285)

The discovery of the organizer by Spemann and Mangold in 1924 raised two kinds of questions: those about the means of patterning the chordate body axis and those about the mechanisms of cell determination by induction. Some researchers, stressing the second, have suggested over the years that the organizer is poorly named and doesn't really organize because inducers act permissively, because they are not unique to the organizer, and because multipotent responsive cells develop complex local differentiations under artificial conditions. Furthermore, with the discovery of meso-endoderm induction in 1969, the possibility arose that this earlier induction generates as much organization as, or more than, does the organizer itself. Evidence is summarized in this article that the organizer does fulfill its title with regard to pattern formation: it adds greatly to embryonic organization by providing information about time, place, scale, and orientation for development by nearby members of the large multipotent competence groups surrounding the organizer. Embryos having smaller or larger organizers due to experimental intervention develop defective axial organization. Without an organizer the embryo develops no body axis and none of the four chordate characters: the notochord, gill slits, dorsal hollow nerve chord, and post-anal tail. For normal axis formation, the organizer's tripartite organization is needed. Each part differs in inducers, morphogenesis, and self-differentiation. The organizer is a trait of development of all members of the chordate phylum. In comparison to hemichordates, which constitute a phylum with some similarities to chordates, the chordamesoderm part is unique to the chordate organizer (the trunk-tail organizer). Its convergent extension displaces the gastrula posterior pole from alignment with the animal-vegetal axis and generates a new anteroposterior axis orthogonal to this old one. Once it has extended to full length, its signaling modifies the dorsoventral dimension. This addition to the organizer is seen as a major event in chordate evolution, bringing body organization beyond that achieved by oocyte organization and meso-endoderm induction in other groups.  (+info)