Stromal accumulation of chondroitin sulphate in mammary tumours of dogs. (25/1490)

To contribute to the investigation of the composition of the extracellular matrix in epithelial tumours, mammary gland tissues of dogs (including tumours, hyperplasias and normal tissue as well as metastatic lesions in lymph nodes and lung) were studied histochemically and immunohistochemically for distribution of sulphated glycosaminoglycans (s-GAGs). The formaline-fixed tissue was stained by alcian blue at pH 5.8, using the 'critical electrolyte concentration' to study the degree of sulphation of s-GAGs. s-GAGs were characterized by degradation with enzymes and nitrous acid and by immunohistochemistry with two anti-chondroitin sulphate monoclonal antibodies. The light microscopic investigation of s-GAG deposits revealed a limited number of patterns of their distribution. The main s-GAGs found in the mammary gland tumours of dogs and in metastatic lesions were chondroitin sulphate (CS) and heparin/heparan sulphate (HEP/HS). CS accumulated in diffuse structures between epithelial cells as well as around clusters of tumour cells. The latter pattern, possibly representing a mesenchymal reaction to the tumour, was present in 74% of the tumours, and in 67% of these, highly sulphated CS was present. A diffuse accumulation of CS was present almost exclusively in complex and mixed tumours; because of the expression of the 3B3 epitope for CS in immature cartilage the spindle cells of complex tumours are argued to be the precursors of the cartilage in mixed tumours. HEP/HS was stored mainly in mast cells that were found in increased numbers in hyperplasias and tumours. By pretreatment of microscopic slides with chondroitinase AC or ABC immunostaining of fibronectin could be made possible in areas in which CS was abundantly present, suggesting that CS may mask fibronectin epitopes. It is concluded that CS with different degrees of sulphation is the most important s-GAG in the extracellular matrix of mammary tumours of dogs. CS and other s-GAGs accumulate at different sites and may have a different pathogenetic significance.  (+info)

Sulphation heterogeneity in the trisaccharide (GalNAcSbeta1, 4GlcAbeta1,3GalNAcS) isolated from the non-reducing terminal of human aggrecan chondroitin sulphate. (26/1490)

We report here the isolation and sulphation isomer analyses of trisaccharides GalNAcS(beta1,4)GlcA(beta1,3)GalNAcS (in which S indicates sulphate) derived from the non-reducing termini of aggrecan chondroitin sulphate. Rat chondrosarcoma and human aggrecans were digested for 1 h at 37 degrees C with 30 micro-units of endo-chondroitinase ABC per microgram of chondroitin sulphate, and trisaccharides were isolated from the digests by ToyoPearl HW40S gel-filtration chromatography. Four trisaccharide species were identified; their sulphation isomer compositions, as determined by digestion with chondroitinase ACII and fluorescence-based ion-exchange HPLC, were GalNAc4Sbeta1,4GlcAbeta1,3GalNAc4S, GalNAc4Sbeta1,4GlcAbeta1,3GalNAc6S, GalNAc4,6Sbeta1,4GlcAbeta1, 3GalNAc4S and GalNAc4,6Sbeta1,4GlcAbeta1,3GalNAc6S. The abundances of such sequences in chondroitin sulphate on aggrecan from normal (foetal to 72 years of age) and from osteoarthritic human knee cartilages were also established. The results showed that non-reducing terminal GalNAc4S or GalNAc4,6S can be linked to either a 4-sulphated or a 6-sulphated disaccharide, suggesting that the sulphation of the last disaccharide might not have a direct effect on the specificity of chondroitin sulphate terminal GalNAc sulphotransferases. Furthermore, for each aggrecan preparation examined, the 4S-to-6S ratio of all chain interior disaccharides was equivalent to that in the last repeating disaccharides at the non-reducing terminus, suggesting that neither chondroitin 4-sulphotransferase nor chondroitin 6-sulphotransferase shows preferential activity near the chain terminus.  (+info)

Permeation of the luminal capillary glycocalyx is determined by hyaluronan. (27/1490)

The endothelial cell glycocalyx influences blood flow and presents a selective barrier to movement of macromolecules from plasma to the endothelial surface. In the hamster cremaster microcirculation, FITC-labeled Dextran 70 and larger molecules are excluded from a region extending almost 0.5 micrometer from the endothelial surface into the lumen. Red blood cells under normal flow conditions are excluded from a region extending even farther into the lumen. Examination of cultured endothelial cells has shown that the glycocalyx contains hyaluronan, a glycosaminoglycan which is known to create matrices with molecular sieving properties. To test the hypothesis that hyaluronan might be involved in establishing the permeation properties of the apical surface glycocalyx in vivo, hamster microvessels in the cremaster muscle were visualized using video microscopy. After infusion of one of several FITC-dextrans (70, 145, 580, and 2,000 kDa) via a femoral cannula, microvessels were observed with bright-field and fluorescence microscopy to obtain estimates of the anatomic diameters and the widths of fluorescent dextran columns and of red blood cell columns (means +/- SE). The widths of the red blood cell and dextran exclusion zones were calculated as one-half the difference between the bright-field anatomic diameter and the width of the red blood cell column or dextran column. After 1 h of treatment with active Streptomyces hyaluronidase, there was a significant increase in access of 70- and 145-kDa FITC-dextrans to the space bounded by the apical glycocalyx, but no increase in access of the red blood cells or in the anatomic diameter in capillaries, arterioles, and venules. Hyaluronidase had no effect on access of FITC-Dextrans 580 and 2,000. Infusion of a mixture of hyaluronan and chondroitin sulfate after enzyme treatment reconstituted the glycocalyx, although treatment with either molecule separately had no effect. These results suggest that cell surface hyaluronan plays a role in regulating or establishing permeation of the apical glycocalyx to macromolecules. This finding and our prior observations suggest that hyaluronan and other glycoconjugates are required for assembly of the matrix on the endothelial surface. We hypothesize that hyaluronidase creates a more open matrix, enabling smaller dextran molecules to penetrate deeper into the glycocalyx.  (+info)

Selective and transient expression of a native chondroitin sulfate epitope in Deiters' cells, pillar cells, and the developing tectorial membrane. (28/1490)

The tectorial membrane (TM) is an acellular connective tissue overlying the sensory hair cells of the organ of Corti. Association of the tectorial membrane with the stereocilia of the sensory hair cells is necessary for proper auditory function. During development, the mature tectorial membrane is thought to arise by fusion of a "major" and "minor" tectorial membrane (Lim, Hear Res 1986;22:117-146). Several proteins and glycoconjugates have been detected in the developing TM; however, the specific molecules which mediate fusion of the two components of the TM have not been identified. In the present study, a novel monoclonal antibody (TC2) that recognizes a native epitope on glycosaminoglycans enriched in chondroitin-4-sulfate revealed a transient and restricted expression in the developing gerbil TM. The localization patterns suggest that Deiters' and pillar cells secrete a TC2-positive matrix prior to birth that later becomes incorporated into the marginal band and superior layer (cover net) of the TM. The developmental timecourse and patterns of TC2 reactivity suggest that this molecule may play a critical role in the fusion of the minor TM with the major TM.  (+info)

Circadian variation in ischemic stroke subtypes. (29/1490)

BACKGROUND AND PURPOSE: While previous studies suggest that the peak time period for the occurrence of ischemic stroke is in the mid- to late-morning hours, detailed information pertaining to circadian variations among the various stroke subtypes has been limited. The purpose of our study was to define the circadian patterns of symptom onset in an acute stroke trial with an established system for stroke subtype classification. METHODS: An analysis was conducted on 1272 patients enrolled in the Trial of Org 10172 in Acute Stroke Treatment (TOAST) study. All patients had a documented time of stroke symptom onset, and all stroke subtype determinations were made by a single rater. RESULTS: The Greatest portion of atherothrombotic strokes (25.7%), cardioembolic strokes (30.5%), and strokes of other/unknown mechanism (27.1%) occurred between 6:01 AM and 12:00 noon. The greatest portion of lacunar strokes (31.6%) were present on awakening. More than one half of the infarcts in this series were either present on awakening or occurred in the mid- to late-morning hours. The correlation between stroke subtype and time of symptom onset did not reach statistical significance (P=0.07, Pearson's chi(2) method). CONCLUSIONS: Although there is a trend for clustering of ischemic stroke in the morning hours, there is insufficient specificity to predict with any reasonable likelihood the stroke subtype according to the circadian pattern of symptom onset.  (+info)

Effects of hyaluronan lyase, hyaluronidase, and chondroitin ABC lyase on mammalian vitreous gel. (30/1490)

PURPOSE: To determine the effects of enzymes on mammalian vitreous gel and to thus infer the structural roles of hyaluronan and chondroitin sulfate in the gel. METHODS: The wet weights of bovine vitreous gels were compared before and after incubation with Streptomyces hyaluronan lyase, chondroitin ABC lyase, testicular hyaluronidase, or buffer alone. The extent of hyaluronan depolymerization was determined by chromatography and that of chondroitin sulfate depolymerization by western blot analysis. RESULTS: After digestion with Streptomyces hyaluronan lyase (30 U/gel), the gel wet weight was the same as that of controls (incubated with buffer alone) despite 94% of the hyaluronan having been depolymerized; when digested with 100 U/gel, the gel wet weight decreased (to 57% of original wet weight versus 86% for controls, P = < 0.001) and hyaluronan was completely depolymerized. Chondroitin ABC lyase digestion (0.2 U/gel) resulted in a slight reduction in gel wet weight (90% versus 96%, P = < 0.001) and depolymerization of 88% of the hyaluronan; the presence of fully digested chondroitin sulfate chains was established. Digestions with 100 and 500 U/gel of testicular hyaluronidase resulted in a decrease (P = < 0.001, both cases) in gel wet weight (53% versus 82%, 100 U/gel; 57%, versus 86%, 500 U/gel) with 75% and 97% hyaluronan depolymerization, respectively. CONCLUSIONS: Depolymerization of all vitreous hyaluronan and of chondroitin sulfate resulted in gel wet weight reduction but not gel destruction. Digestion with 30 U/gel of Streptomyces hyaluronan lyase revealed a small pool (6%) of relatively enzyme-resistant hyaluronan that specifically contributed toward maintaining gel wet weight.  (+info)

Amyloid precursor-like protein 2 promotes cell migration toward fibronectin and collagen IV. (31/1490)

Previous studies have established that in response to wounding, the expression of amyloid precursor-like protein 2 (APLP2) in the basal cells of migrating corneal epithelium is greatly up-regulated. To further our understanding of the functional significance of APLP2 in wound healing, we have measured the migratory response of transfected Chinese hamster ovary (CHO) cells expressing APLP2 isoforms to a variety of extracellular matrix components including laminin, collagen types I, IV, and VII, fibronectin, and heparan sulfate proteoglycans (HSPGs). CHO cells overexpressing either of two APLP2 variants, differing in chondroitin sulfate (CS) attachment, exhibit a marked increase in chemotaxis toward type IV collagen and fibronectin but not to laminin, collagen types I and VII, and HSPGs. Cells overexpressing APLP2-751 (CS-modified) exhibited a greater migratory response to fibronectin and type IV collagen than their non-CS-attached counterparts (APLP2-763), suggesting that CS modification enhanced APLP2 effects on cell migration. Moreover, in the presence of chondroitin sulfate, transfectants overexpressing APLP2-751 failed to exhibit this enhanced migration toward fibronectin. The APLP2-ECM interactions were also explored by solid phase adhesion assays. While overexpression of APLP2 isoforms moderately enhanced CHO adhesion to laminin, collagen types I and VII, and HSPGs lines, especially those overexpressing APLP2-751, exhibited greatly increased adhesion to type IV collagen and fibronectin. These observations suggest that APLP2 contributes to re-epithelialization during wound healing by supporting epithelial cell adhesion to fibronectin and collagen IV, thus influencing their capacity to migrate over the wound bed. Furthermore, APLP2 interactions with fibronectin and collagen IV appear to be potentiated by the addition of a CS chain to the core proteins.  (+info)

Vaccinia virus envelope D8L protein binds to cell surface chondroitin sulfate and mediates the adsorption of intracellular mature virions to cells. (32/1490)

We previously showed that an envelope A27L protein of intracellular mature virions (IMV) of vaccinia virus binds to cell surface heparan sulfate during virus infection. In the present study we identified another viral envelope protein, D8L, that binds to chondroitin sulfate on cells. Soluble D8L protein interferes with the adsorption of wild-type vaccinia virions to cells, indicating a role in virus entry. To explore the interaction of cell surface glycosaminoglycans and vaccinia virus, we generated mutant viruses from a control virus, WR32-7/Ind14K (A27L(+) D8L(+)) to be defective in expression of either the A27L or the D8L gene (A27L(+) D8L(-) or A27L(-) D8L(+)) or both (A27L(-) D8L(-)). The A27L(+) D8L(+) and A27L(-) D8L(+) mutants grew well in BSC40 cells, consistent with previous observations. However, the IMV titers of A27L(+) D8L(-) and A27L(-) D8L(-) viruses in BSC40 cells were reduced, reaching only 10% of the level for the control virus. The data suggested an important role for D8L protein in WR32-7/Ind14K virus growth in cell cultures. A27L protein, on the other hand, could not complement the functions of D8L protein. The low titers of the A27L(+) D8L(-) and A27L(-) D8L(-) mutant viruses were not due to defects in the morphogenesis of IMV, and the mutant virions demonstrated a brick shape similar to that of the control virions. Furthermore, the infectivities of the A27L(+) D8L(-) and A27L(-) D8L(-) mutant virions were 6 to 10% of that of the A27L(+) D8L(+) control virus. Virion binding assays revealed that A27L(+) D8L(-) and A27L(-) D8L(-) mutant virions bound less well to BSC40 cells, indicating that binding of viral D8L protein to cell surface chondroitin sulfate could be important for vaccinia virus entry.  (+info)