Premature termination codon in the aggrecan gene of nanomelia and its influence on mRNA transport and stability. (65/3820)

AIM: To analyze the influence of the premature termination codon on mRNA transport and stability METHODS: Chondrocyte mRNA was isolated from homozygous and heterozygous nanomelic 17-days old embryos and examined by RT-PCR analysis. To analyze aggrecan mRNA stability, mRNA synthesis was inhibited with DRB [5,6 dichloro-1-(-D-ribofuranosyl benzimidazole)], a specific inhibitor of RNA polymerase II. Visualization of the aggrecan alleles was performed by in situ hybridization. RESULTS: The level of mutant aggrecan mRNA within the nucleus was equal to that of the control, but no mutant mRNA was observed in the cytoplasm. RT-PCR revealed that the mutant transcript was only detectable in the nucleus, compared with house-keeping glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene or collagen type II. A restriction site induced by premature termination codon TAA allowed the distinction of normal and mutant transcripts in chondrocytes derived from embryos heterozygous for the nanomelic mutation. After the treatment with DRB, identical decay rates were demonstrated for both transcripts within the heterozygous nucleus. In situ hybridization showed no abnormal mRNA accumulation. CONCLUSION: This is the first evidence suggesting that the transcript of the mRNA with the premature termination codon within an exon does exit the nucleus.  (+info)

Mitogen-activated protein kinase and nuclear factor kappaB together regulate interleukin-17-induced nitric oxide production in human osteoarthritic chondrocytes: possible role of transactivating factor mitogen-activated protein kinase-activated proten kinase (MAPKAPK). (66/3820)

OBJECTIVE: To explore the signaling pathways by which the proinflammatory cytokine interleukin-17 (IL-17) may contribute to cartilage catabolism in osteoarthritis (OA) by inducing inducible nitric oxide synthase (iNOS) expression in chondrocytes. METHODS: We examined the IL-17-induced NO production in human OA chondrocytes, in combination with the proinflammatory cytokines IL-1beta, tumor necrosis factor alpha (TNF alpha), and leukemia inhibitory factor (LIF); the antiinflammatory cytokines IL-4, IL-10, and IL-13; and IL-1 receptor antagonist (IL-1Ra). Further, we explored the major intracellular signaling pathways through which IL-17 induced iNOS expression and NO production. RESULTS: Treatment with IL-17 induced a dose-dependent increase in the level of NO. When IL-17 was combined with the above factors, it resulted in a synergistic effect with TNF alpha, an additive effect with LIF, and no further effect than when used alone with IL-1beta. IL-4, IL-10, IL-13, and IL-1Ra had no true effect on IL-17-induced NO production. The cAMP mimetics, 3-isobutyl-1-methyl xanthine plus forskolin, completely blocked IL-17-induced NO production. KT-5720, genistein, and Calphostin C, inhibitors of protein kinase A (PKA), tyrosine kinase, and protein kinase C, respectively, reduced the IL-17-induced NO production by 72%, 56%, and 42%, respectively. Within minutes, IL-17 induced the phosphorylation of mitogen-activated protein kinase kinase-1/2 (MEK-1/2), -3/6 (MKK-3/6), p44/42, p38, and inhibitor of nuclear factor kappaB (I kappaB)-alpha, as well as the activation of mitogen-activated protein kinase-activated protein kinase-1 and -2 (MAPKAPK-1 and -2). Interestingly, IL-17 induced phosphorylation of the stress-activated protein kinase/Jun N-terminal kinase (SAPK/JNK) (p54/46) only when PKA was inhibited. Specific protein kinase inhibitors for MEK-1/2 (PD98059), p38 (SB202190), and nuclear factor kappaB (NF-kappaB) (pyrrolidine dithiocarbamate) each markedly decreased the IL-17-increased iNOS level and NO production. Inhibiting MAPK, including MEK-1/2 and p38, had no effect on the IL-17-induced activation of IkappaB-alpha, but reversed the IL-17 activation of MAPKAPK-1 and -2, respectively. CONCLUSION: These findings show that the stimulation of NO production by IL-17 is mediated mainly by a complex activation of kinases, especially PKA, NF-kappaB, and MAPK. NF-kappaB appears to require MAPK activation, with downstream activation of MAPKAPK probably acting as a transactivating factor, to induce iNOS expression.  (+info)

Pax1 and Pax9 synergistically regulate vertebral column development. (67/3820)

The paralogous genes Pax1 and Pax9 constitute one group within the vertebrate Pax gene family. They encode closely related transcription factors and are expressed in similar patterns during mouse embryogenesis, suggesting that Pax1 and Pax9 act in similar developmental pathways. We have recently shown that mice homozygous for a defined Pax1 null allele exhibit morphological abnormalities of the axial skeleton, which is not affected in homozygous Pax9 mutants. To investigate a potential interaction of the two genes, we analysed Pax1/Pax9 double mutant mice. These mutants completely lack the medial derivatives of the sclerotomes, the vertebral bodies, intervertebral discs and the proximal parts of the ribs. This phenotype is much more severe than that of Pax1 single homozygous mutants. In contrast, the neural arches, which are derived from the lateral regions of the sclerotomes, are formed. The analysis of Pax9 expression in compound mutants indicates that both spatial expansion and upregulation of Pax9 expression account for its compensatory function during sclerotome development in the absence of Pax1. In Pax1/Pax9 double homozygous mutants, formation and anteroposterior polarity of sclerotomes, as well as induction of a chondrocyte-specific cell lineage, appear normal. However, instead of a segmental arrangement of vertebrae and intervertebral disc anlagen, a loose mesenchyme surrounding the notochord is formed. The gradual loss of Sox9 and Collagen II expression in this mesenchyme indicates that the sclerotomes are prevented from undergoing chondrogenesis. The first detectable defect is a low rate of cell proliferation in the ventromedial regions of the sclerotomes after sclerotome formation but before mesenchymal condensation normally occurs. At later stages, an increased number of cells undergoing apoptosis further reduces the area normally forming vertebrae and intervertebral discs. Our results reveal functional redundancy between Pax1 and Pax9 during vertebral column development and identify an early role of Pax1 and Pax9 in the control of cell proliferation during early sclerotome development. In addition, our data indicate that the development of medial and lateral elements of vertebrae is regulated by distinct genetic pathways.  (+info)

Apocynin, a plant-derived, cartilage-saving drug, might be useful in the treatment of rheumatoid arthritis. (68/3820)

OBJECTIVE: To investigate whether apocynin, 1-(4-hydroxy-3-methoxyphenyl)ethanone, is able to diminish inflammation-induced cartilage destruction in rheumatoid arthritis (RA), studied in a human in vitro model. METHODS: Apocynin was added to cultures of RA peripheral blood mononuclear cells (PBMNC). Cartilage-destructive activity was determined by addition of culture supernatant to tissue samples of human articular cartilage. In addition, the proliferation of PBMNC, their production of tumour necrosis factor alpha (TN-Falpha), interleukin (IL)-1 and IL-10, and T-cell production of interferon gamma (IFN-gamma) and IL-4, as measures for T1 and T2 cell activity, were determined. RESULTS: Apocynin was able to counteract RA PBMNC-induced inhibition of cartilage matrix proteoglycan synthesis, while no effect on inflammation-enhanced proteoglycan release was found. The effect was accompanied by a decrease in IL-1 and TNF-alpha production by the MNC. No effect on T-cell proliferation was found, but the production of IFN-gamma, IL-4 and T-cell-derived IL-10 was strongly diminished. Most important, apocynin did not show any direct adverse effects on chondrocyte metabolism; on the contrary, it diminished the release of proteoglycans from the cartilage matrix. CONCLUSION: Apocynin in vitro inhibits inflammation-mediated cartilage destruction without having adverse effects on cartilage. The latter may be an advantage of apocynin over many other non-steroidal anti-inflammatory drugs. Therefore, apocynin might have an added beneficial effect in protecting RA patients from joint destruction.  (+info)

Osteoarthritis in cricoarytenoid joint. (69/3820)

OBJECTIVE: Occurrence of osteoarthritis is a frequent event of limb joints in people over 40 years of age. The human cricoarytenoid joint is comparable with the joints of the limbs despite its structure and extracellular matrix composition. To date, little is known about the occurrence of osteoarthritis in the human cricoarytenoid joint. METHODS: Sixty-eight cricoarytenoid joints (42 male and 26 female, age 25-98 years) were analysed by means of histology, lectin histochemistry, immunohistochemistry as well as scanning and transmission electron microscopy. RESULTS: About 50% of the investigated cricoarytenoid joints aged over 40 years show degenerative changes in their joint surface structure at varying levels of intensity. The articular cartilage surface is fibrillated in some places and sometimes shows fissures. A demascing of collagen fibrils next to the joint surface and a loss of proteoglycans in the upper cartilage layers can be observed. Chondrocytes near the joint surface appear as voluminous chondrocyte clusters. The clusters and the superficial cartilage layer show a positive reaction to type VI collagen antibodies. The distribution patterns of lectins are completely changed in fibrillated cartilage areas. CONCLUSION: Degenerative alterations in diarthrodial joints resembling osteoarthritis can occur in the joints of the larynx. These structural changes of the articular cartilage are comparable to osteoarthritis of the limb joints. Osteoarthritis in the cricoarytenoid joint may lead to impaired movements of the arytenoid cartilages. Functionally the structural changes may lead to negative consequences during vocal production, such as impaired vocal quality and reduced vocal intensity.  (+info)

Hepatocyte growth factor in human osteoarthritic cartilage. (70/3820)

OBJECTIVE: Hepatocyte growth factor/scatter factor is a potent mitogen, morphogen and motogen for a variety of mainly epithelial cells. Hepatocyte growth factor is synthesized by mesenchymal cells and can be found in various tissues. The objective of this study was to investigate the expression and distribution patterns of this pleiotropic growth factor and its receptor, the product of the proto-oncogene c-met in normal and osteoarthritic human knee cartilage. METHODS: Five normal and 14 osteoarthritic human cartilage samples graded histomorphologically by Mankin Score, were studied by radioactive in-situ hybridization and immunohistochemistry for the expression of Hepatocyte growth factor and the c-met receptor. RESULTS: Hepatocyte growth factor could be found by immunohistochemistry in the territorial matrix surrounding the chondrocytes of calcified cartilage and within the deep zone of normal cartilage. Chondrocytes of these cartilage zones showed also positive c-met receptor-staining. Moreover, a small number of chondrocytes in the superficial and intermediate zone showed c-met staining. In accordance with the increased hepatocyte growth factor staining of osteoarthritic cartilage, an enhanced expression of hepatocyte growth factor-RNA by chondrocytes of the deep zone as well as the deeper mid zone was observed. Contrary to normal cartilage, c-met was identified immunohistochemically in osteoarthritic chondrocytes of all cartilage zones. CONCLUSION: These results indicate that hepatocyte growth factor seems to be acting in an autocrine/paracrine manner in normal and osteoarthritic cartilage. The ubiquitous presence of the HGF/HGF-receptor complex in osteoarthritic chondrocytes suggests that hepatocyte growth factor may contribute to the altered metabolism in osteoarthritic cartilage.  (+info)

Expression of genes for estrogen receptors alpha and beta in human articular chondrocytes. (71/3820)

OBJECTIVE: To investigate the gene expression of estrogen receptor (ER) alpha and ERbeta in human articular chondrocytes. METHODS: 16 articular cartilage specimens were obtained from 15 patients during surgery. Three of the specimens were from men and 13 from women; three from hip joints and 13 from knee joints; four were normal and 12 showed osteoarthritic cartilage. Total RNA was extracted from the articular chondrocytes and the expression of both ERalpha and ERbeta genes was investigated by the reverse transcription-polymerase chain reaction (RT-PCR) method. RESULTS: Gene expressions of ERalpha were detected in all specimens and those of ERbeta were found in 15 specimens by the RT-PCR method. There was a significant correlation between the amounts of ERalpha and ERbeta. Expression levels of both genes were significantly higher in men than in women. There were no significant differences in the expression levels of both ER genes between the hip and knee joint sites, nor between normal and osteoarthritic tissues. CONCLUSION: This study is to our knowledge the first to demonstrate the gene expression of both ERalpha and ERbeta in human articular chondrocytes. Since there are some functional differences between the two receptors, the effects of estrogen on cartilage metabolism should be elucidated by two different receptor mechanisms.  (+info)

Characterization of an in vitro model of elastic fiber assembly. (72/3820)

Elastic fibers consist of two morphologically distinct components: elastin and 10-nm fibrillin-containing microfibrils. During development, the microfibrils form bundles that appear to act as a scaffold for the deposition, orientation, and assembly of tropoelastin monomers into an insoluble elastic fiber. Although microfibrils can assemble independent of elastin, tropoelastin monomers do not assemble without the presence of microfibrils. In the present study, immortalized ciliary body pigmented epithelial (PE) cells were investigated for their potential to serve as a cell culture model for elastic fiber assembly. Northern analysis showed that the PE cells express microfibril proteins but do not express tropoelastin. Immunofluorescence staining and electron microscopy confirmed that the microfibril proteins produced by the PE cells assemble into intact microfibrils. When the PE cells were transfected with a mammalian expression vector containing a bovine tropoelastin cDNA, the cells were found to express and secrete tropoelastin. Immunofluorescence and electron microscopic examination of the transfected PE cells showed the presence of elastic fibers in the matrix. Biochemical analysis of this matrix showed the presence of cross-links that are unique to mature insoluble elastin. Together, these results indicate that the PE cells provide a unique, stable in vitro system in which to study elastic fiber assembly.  (+info)