Inhibitory effects of huperzine B on cholinesterase activity in mice. (41/1796)

AIM: To determine the anticholinesterase properties of huperzine B (Hup B) and compare with tacrine in vitro and in vivo. METHODS: Spectrophotometry was used to determine ChE activity. RESULTS: Hup B showed much more selective inhibition to acetylcholinesterase (AChE) than tacrine. The IC50 ratios of Hup B and tacrine for butyrylcholinesterase (BuChE): AChE were 65.8 and 0.54, respectively. Hup B ig exhibited higher efficacy on the inhibition of brain AChE than that of tacrine. Tacrine was more effective in the inhibition of serum BuChE in mice with severe concomitant peripheral adverse effects than Hup B. A single ig dose of Hup B produced steady state of AChE inhibition in 4 h. CONCLUSION: Hup B exhibits higher selectivity and efficacy in the inhibition of AChE, and lower toxicity in mice than tacrine.  (+info)

Amino acid residues involved in the interaction of acetylcholinesterase and butyrylcholinesterase with the carbamates Ro 02-0683 and bambuterol, and with terbutaline. (42/1796)

In order to identify amino acids involved in the interaction of acetylcholinesterase (AChE; EC 3.1.1.7) and butyrylcholinesterase (BChE; EC 3.1.1.8) with carbamates, the time course of inhibition of the recombinant mouse enzymes BChE wild-type (w.t.), AChE w.t. and of 11 site-directed AChE mutants by Ro 02-0683 and bambuterol was studied. In addition, the reversible inhibition of cholinesterases by terbutaline, the leaving group of bambuterol, was studied. The bimolecular rate constant of AChE w.t. inhibition was 6.8 times smaller by Ro 02-0683 and 16000 times smaller by bambuterol than that of BChE w.t. The two carbamates were equipotent BChE inhibitors. Replacement of tyrosine-337 in AChE with alanine (resembling the choline binding site of BChE) resulted in 630 times faster inhibition by bambuterol. The same replacement decreased the inhibition by Ro 02-0683 ten times. The difference in size of the choline binding site in the two w.t. enzymes appeared critical for the selectivity of bambuterol and terbutaline binding. Removal of the charge with the mutation D74N caused a reduction in the reaction rate constants for Ro 02-0683 and bambuterol. Substitution of tyrosine-124 with glutamine in the AChE peripheral site significantly increased the inhibition rate for both carbamates. Substitution of phenylalanine-297 with alanine in the AChE acyl pocket decreased the inhibition rate by Ro 02-0683. Computational docking of carbamates provided plausible orientations of the inhibitors inside the active site gorge of mouse AChE and human BChE, thus substantiating involvement of amino acid residues in the enzyme active sites critical for the carbamate binding as derived from kinetic studies.  (+info)

Interaction between the peripheral site residues of human butyrylcholinesterase, D70 and Y332, in binding and hydrolysis of substrates. (43/1796)

Human butyrylcholinesterase displays substrate activation with positively charged butyrylthiocholine (BTC) as the substrate. Peripheral anionic site (PAS) residues D70 and Y332 appear to be involved in the initial binding of charged substrates and in activation control. To determine the contribution of PAS residues to binding and hydrolysis of quaternary substrates and activation control, the single mutants D70G/Y and Y332F/A/D and the double mutants Y332A/D70G and Y332D/D70Y were studied. Steady-state hydrolysis of the charged substrates, BTC and succinyldithiocholine, and the neutral ester o-nitrophenyl butyrate was measured. In addition, inhibition of wild-type and mutant enzymes by tetramethylammonium was investigated, at low concentrations of BTC. Single and double mutants of D70 and Y332 showed little or no substrate activation, suggesting that both residues were important for activation control. The effects of double mutations on D70 and Y332 were complex. Double-mutant cycle analysis provided evidence for interaction between these residues. The category of interaction (either synergistic, additive, partially additive or antagonistic) was found to depend on the nature of the substrate and on measured binding or kinetic parameters. This complexity reflects both the cross-talk between residues involved in the sequential formation of productive Michaelian complexes and the effect of peripheral site residues on catalysis. It is concluded that double mutations on the PAS induce a conformational change in the active site gorge of butyrylcholinesterase that can alter both substrate binding and enzyme acylation.  (+info)

Attenuation of scopolamine-induced deficits in navigational memory performance in rats by bis(7)-tacrine, a novel dimeric AChE inhibitor. (44/1796)

AIM: To study the effects of 1,7-N-heptylene-bis-9,9'-amino-1,2,3,4-tetrahydroacridine [bis(7)-tacrine], a novel dimeric acetylcholine-sterase inhibitor (AChEI) derived from 9-amino-1,2,3,4-tetrahydroaminoacridine (tacrine), on scopolamine-induced spatial memory impairment. METHODS: The effects of bis(7)-tacrine were investigated on the 5-d performance of young adult rats in the Morris water maze. The latency to find the platform in the water maze was measured to evaluate performance. Tacrine was used as a reference drug. RESULTS: Scopolamine (0.3 mg.kg-1, i.p.) resulted in an increase in latency period (> 100% increase) as compared with saline treated controls. Both bis(7)-tacrine and tacrine lessened the increased latency induced by scopolamine to the level of saline control group. The relative potency of bis(7)-tacrine (0.35 mumol.kg-1, i.g. or i.p.) to shorten the escape latency was 24 or 12 times of tacrine (8.52 mumol.kg-1 i.g., 4.26 mumol.kg-1 i.p.) following i.g. or i.p. administration, respectively. There appeared to be an inverse bell-shape dose-dependent effect for both compounds tested. CONCLUSION: Bis(7)-tacrine is a more potent and orally active AChEI than tacrine, and has potential for the palliative treatment of Alzheimer disease.  (+info)

Time course of isolated rat fundus response to muscarinic agonists: a measure of intrinsic efficacy. (45/1796)

The establishment of a dose-response relationship and its quantification is the usual procedure for analysing drug action on an isolated organ. However, the time course of the effect seems to be an inherent characteristic of the agonist which produces it. In our study, we have analyzed the time-response curves of four cholinergic agonists (acetylcholine, methacholine, carbachol and bethanechol) which produce tonic contractions of the isolated rat gastric fundus. The order of affinity of agonists to muscarinic receptors on the rat fundus were carbachol > bethanechol > methacholine > acetylcholine (K(A) values: 46 +/- 12, 84 +/- 21, 380 +/- 110 and 730 +/- 120 nM, respectively). The effective concentrations which produced 60% of the maximal response (EC60) were used for establishing the time-response curves. The time-response curves were also recorded after partial alkylation of muscarinic receptors with phenoxybenzamine, after exposure of the isolated rat fundus to physostigmine and after addition of supramaximal concentrations of the agonists. The experimental time-response curve for acetylcholine was on the extreme left, followed by curves for methacholine, bethanechol and carbachol, respectively. Phenoxybenzamine and supramaximal doses of the agonists did not change the order of response development in time, but supramaximal doses shifted all curves to the left and phenoxybenzamine shifted all time-response curves to the right. Only physostigmine shifted the time-response curve for methacholine to the right. The results of our study suggest that the response rate of the isolated rat gastric fundus to cholinergic agonists depends on the intrinsic activity of these agents, but not on their affinity for muscarinic receptors.  (+info)

Calcium channels involved in the inhibition of acetylcholine release by presynaptic muscarinic receptors in rat striatum. (46/1796)

1. The mechanism of the inhibitory action of presynaptic muscarinic receptors on the release of acetylcholine from striatal cholinergic neurons is not known. We investigated how the electrically stimulated release of [3H]-acetylcholine from superfused rat striatal slices and its inhibition by carbachol are affected by specific inhibitors of voltage-operated calcium channels of the L-type (nifedipine), N-type (omega-conotoxin GVIA) and P/Q-type (omega-agatoxin IVA). 2. The evoked release of [3H]-acetylcholine was not diminished by nifedipine but was lowered by omega-conotoxin GVIA and by omega-agatoxin IVA, indicating that both the N- and the P/Q-type (but not the L-type) channels are involved in the release. The N-type channels were responsible for approximately two thirds of the release. The release was >97% blocked when both omega-toxins acted together. 3. The inhibition of [3H]-acetylcholine release by carbachol was not substantially affected by the blockade of the L- or P/Q-type channels. It was diminished but not eliminated by the blockade of the N-type channels. 4. In experiments on slices in which cholinesterases had been inhibited by paraoxon, inhibition of [3H]-acetylcholine release by endogenous acetylcholine accumulating in the tissue could be demonstrated by the enhancement of the release after the addition of atropine. The inhibition was higher in slices with functional N-type than with functional P/Q-type channels. 5. We conclude that both the N- and the P/Q-type calcium channels contribute to the stimulation-evoked release of acetylcholine in rat striatum, that the quantitative contribution of the N-type channels is higher, and that the inhibitory muscarinic receptors are more closely coupled with the N-type than with the P/Q-type calcium channels.  (+info)

Influence of metoclopramide on plasma cholinesterase and duration of action of mivacurium. (47/1796)

Mivacurium is metabolized by plasma cholinesterase (PCHE). Metoclopramide inhibits PCHE in vitro and in vivo. We have assessed the effect of metoclopramide on duration of action of mivacurium and measured PCHE at baseline and at the time of maximal block. In a randomized, double-blind study, 30 patients received metoclopramide 0.15 mg kg-1 i.v. or saline, followed by propofol anaesthesia and mivacurium 0.15 mg kg-1. Using a TOF-Guard accelerometer, times to recovery of TI to 25%, 75% and 90% were 13.4, 19.3 and 21.9 min in the saline group and 17.8, 25.3 and 28.8 min in the metoclopramide group (P < 0.01, P < 0.05, P < 0.05, respectively). There were no differences in onset time or recovery index between the groups. PCHE activity at the time of maximum block decreased within each group (P < 0.01) but there was no difference between groups. In a second biochemical study of eight patients, a small decrease in PCHE activity was detected after metoclopramide 0.15 mg kg-1, but before administration of mivacurium (P < 0.025). We conclude that metoclopramide prolongs the duration of action of mivacurium.  (+info)

The binding sites of inhibitory monoclonal antibodies on acetylcholinesterase. Identification of a novel regulatory site at the putative "back door". (48/1796)

We investigated the target sites of three inhibitory monoclonal antibodies on Electrophorus acetylcholinesterase (AChE). Previous studies showed that Elec-403 and Elec-410 are directed to overlapping but distinct epitopes in the peripheral site, at the entrance of the catalytic gorge, whereas Elec-408 binds to a different region. Using Electrophorus/rat AChE chimeras, we identified surface residues that differed between sensitive and insensitive AChEs: the replacement of a single Electrophorus residue by its rat homolog was able to abolish binding and inhibition, for each antibody. Reciprocally, binding and inhibition by Elec-403 and by Elec-410 could be conferred to rat AChE by the reverse mutation. Elec-410 appears to bind to one side of the active gorge, whereas Elec-403 covers its opening, explaining why the AChE-Elec-410 complex reacts faster than the AChE-Elec-403 or AChE-fasciculin complexes with two active site inhibitors, m-(N,N, N-trimethyltammonio)trifluoro-acetophenone and echothiophate. Elec-408 binds to the region of the putative "back door," distant from the peripheral site, and does not interfere with the access of inhibitors to the active site. The binding of an antibody to this novel regulatory site may inhibit the enzyme by blocking the back door or by inducing a conformational distortion within the active site.  (+info)