Mechanical strain modulates maximal phosphatidylinositol turnover in airway smooth muscle. (17/652)

Mechanical strain regulates the maximal level of myosin light chain phosphorylation mediated by muscarinic activation in airway smooth muscle. Accordingly, we tested the hypothesis that mechanical strain regulates maximal phosphatidylinositol (PI) turnover (V(max)) coupled to muscarinic receptors in bovine tracheal smooth muscle. We found that PI turnover was not significantly length dependent in unstimulated tissues. However, carbachol-induced PI turnover was linearly dependent on muscle length at both 1 and 100 microM. The observed linear length dependence of PI turnover at maximal carbachol concentration (100 microM) suggests that mechanical strain regulates V(max). When carbachol concentration-PI turnover relationships were measured at optimal length and at 20% optimal length, the results could be explained by changes in V(max) alone. To determine whether the length-dependent step is upstream from heterotrimeric G proteins, we investigated the length dependence of fluoroaluminate-induced PI turnover. The results indicate that fluoroaluminate-induced PI turnover remained significantly length dependent at maximal concentration. These findings together suggest that regulating functional units of G proteins and/or phospholipase C enzymes may be the primary mechanism of mechanosensitive modulation in airway smooth muscle.  (+info)

Muscarinic receptor heterogeneity in follicle-enclosed Xenopus oocytes. (18/652)

1. Ionic current responses elicited by acetylcholine (ACh) in follicle-enclosed Xenopus oocytes (follicles) were studied using the two-electrode voltage-clamp technique. ACh generated a fast chloride current (Fin) and inhibited K+ currents gated by cAMP (IK,cAMP) following receptor activation by adenosine, follicle-stimulating hormone or noradrenaline. These previously described cholinergic responses were confirmed to be of the muscarinic type, and were independently generated among follicles from different frogs. 2. Inhibition of IK,cAMP was about 100 times more sensitive to ACh than Fin activation; the half-maximal effective concentrations (EC50) were 6.6 +/- 0.4 and 784 +/- 4 nM, respectively. 3. Both responses were blocked by several muscarinic receptor antagonists. Using the respective EC50 concentrations of ACh as standard, the antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide blocked the two effects with very different potencies. Fin was blocked with a half-maximal inhibitory concentration (IC50) of 2.4 +/- 0.07 nM, whilst the IC50 for IK,cAMP inhibition was 5.9 +/- 0.2 microM. 4. Oxotremorine, a muscarinic agonist, preferentially stimulated IK, cAMP inhibition (EC50 = 15.8 +/- 1.4 microM), whilst Fin was only weakly activated. In contrast, oxotremorine inhibited Fin generated by ACh with an IC50 of 2.3 +/- 0.7 microM. 5. Fin elicited via purinergic receptor stimulation was not affected by oxotremorine, indicating that the inhibition produced was specific to the muscarinic receptor, and suggesting that muscarinic actions do not exert a strong effect on follicular cell-oocyte coupling. 6. Using reverse transcription-PCR, transcripts of a previously cloned muscarinic receptor from Xenopus (XlmR) were amplified from the RNA of both the isolated follicular cells and the oocyte. The pharmacological and molecular characteristics suggest that XlmR is involved in IK,cAMP inhibition. 7. In conclusion, follicular cells possess two different muscarinic receptors, one resembling the M2 (or M4) subtype and the other the M3 subtype. These receptors are coupled to distinct membrane mechanisms leading to independent regulation of two membrane conductances.  (+info)

Effects of adrenomedullin on cyclic AMP formation and on relaxation in iris sphincter smooth muscle. (19/652)

PURPOSE: To determine whether iris sphincter and other tissues of the iris-ciliary body secrete adrenomedullin (ADM), a novel hypotensive peptide that is classified into the calcitonin gene-related peptide (CGRP) family and to determine the binding sites for ADM and compare the effects of ADM and CGRP in the absence and presence of their receptor antagonists on cAMP formation and relaxation in the iris sphincter. METHODS: Sphincter muscle was incubated in Krebs-Ringer bicarbonate buffer in the absence and presence of ADM for 10 minutes. Accumulation of cAMP in the tissue extract was determined by radioimmunoassay (RIA). The binding of [125I]ADM to iris sphincter membranes was carried out by rapid filtration. Distribution of ADM in the ocular tissues was determined by RIA. Changes in muscle tension were recorded isometrically. RESULTS: Immunoreactive ADM was present in all tissues of the cat iris-ciliary body. In the isolated cat iris sphincter, ADM increased cAMP accumulation in a time- (t1/2 = 2.2 minutes) and concentration- (EC50 = 13 nM) dependent manner, and this effect was sixfold more efficacious than CGRP. ADM, CGRP, vasoactive intestinal peptide, prostaglandin E2, isoproterenol, and forskolin increased cAMP formation in cat sphincter by 12.5-, 2-, 2.2-, 1-, 2.6-, and 2.4-fold, respectively. The rank of the effects of ADM on cAMP formation in iris sphincter isolated from different animal species was in the following order: cat > dog > bovine > human > rabbit. In the cat iris sphincter, the CGRP antagonist, CGRP(8 to 37), was more effective than the ADM antagonist, ADM (26 to 52), in inhibiting both ADM- and CGRP-induced cAMP formation. ADM and CGRP inhibited carbachol-induced contraction in a concentration-dependent manner with IC50 values of 10 and 90 nM, respectively. Both ADM and CGRP displaced the binding of [125I]ADM to sphincter membranes effectively, with IC50 values of 0.81 and 1.15 nM, respectively. CONCLUSIONS: In iris sphincter isolated from cat and other mammalian species including human, ADM is a much more efficacious activator of adenylate cyclase and a much more effective relaxant than CGRP. Its biological effects may be due to direct involvement of ADM receptors, but also to activation of CGRP receptors. Activation of ADM receptors by the peptide leads to concentration-dependent increases in cAMP accumulation and subsequent inhibition (relaxation) of smooth muscle contraction. These findings suggest a role for ADM as a local modulator of smooth muscle tone. A possible function for this potent hypotensive peptide in the regulation of intraocular pressure remains to be investigated.  (+info)

Asymmetric distribution of muscarinic acetylcholine receptors in Madin-Darby canine kidney cells. (20/652)

We have characterized the muscarinic ACh receptors (mAChRs) expressed in Madin- Darby canine kidney (MDCK) strain II epithelial cells. Binding studies with the membrane-impermeable antagonist N-[(3)H]methylscopolamine demonstrated that mAChRs are approximately 2.5 times more abundant on the basolateral than on the apical surface. Apical, but not basolateral, mAChRs inhibited forskolin-stimulated adenylyl cyclase activity in response to the agonist carbachol. Neither apical nor basolateral mAChRs exhibited detectable carbachol-stimulated phospholipase C activity. Carbachol application to the apical or the basolateral membrane resulted in a threefold increase in intracellular Ca(2+) concentration, which was completely inhibited by pertussis toxin on the apical side and partially inhibited on the basolateral side. RT-PCR analysis showed that MDCK cells express the M(4) and M(5) receptor mRNAs. These data suggest that M(4) receptors reside on the apical and basolateral membranes of polarized MDCK strain II cells and that the M(5) receptor may reside in the basolateral membrane of a subset of cells.  (+info)

PKC-epsilon regulates basolateral endocytosis in human T84 intestinal epithelia: role of F-actin and MARCKS. (21/652)

Protein kinase C (PKC) and the actin cytoskeleton are critical effectors of membrane trafficking in mammalian cells. In polarized epithelia, the role of these factors in endocytic events at either the apical or basolateral membrane is poorly defined. In the present study, phorbol 12-myristate 13-acetate (PMA) and other activators of PKC selectively enhanced basolateral but not apical fluid-phase endocytosis in human T84 intestinal epithelia. Stimulation of basolateral endocytosis was blocked by the conventional and novel PKC inhibitor Go-6850, but not the conventional PKC inhibitor Go-6976, and correlated with translocation of the novel PKC isoform PKC-epsilon. PMA treatment induced remodeling of basolateral F-actin. The actin disassembler cytochalasin D stimulated basolateral endocytosis and enhanced stimulation of endocytosis by PMA, whereas PMA-stimulated endocytosis was blocked by the F-actin stabilizers phalloidin and jasplakinolide. PMA induced membrane-to-cytosol redistribution of the F-actin cross-linking protein myristoylated alanine-rich C kinase substrate (MARCKS). Cytochalasin D also induced MARCKS translocation and enhanced PMA-stimulated translocation of MARCKS. A myristoylated peptide corresponding to the phosphorylation site domain of MARCKS inhibited both MARCKS translocation and PMA stimulation of endocytosis. MARCKS translocation was inhibited by Go-6850 but not Go-6976. The results suggest that a novel PKC isoform, likely PKC-epsilon, stimulates basolateral endocytosis in model epithelia by a mechanism that involves F-actin and MARCKS.  (+info)

Characterization of the heat-released substance from rat ileal muscle. (22/652)

Previous studies have proposed that increasing the temperature around the rat isolated ileal muscles induces a heat-released substance (HRS) which causes a decrease in the contractile response. Therefore, we have studied various characteristics of this proposed HRS in animals exposed to heat-stress conditions. In these animals, the contraction of muscles in response to carbachol was decreased by increasing the temperature from 37 degrees C to 40 degrees C. Further, bathing the ileum in a conditioned medium prepared by incubation of the ileal muscle at 40 degrees C has shown less contraction at 40 degrees C than in presence of normal Krebs medium. In addition, conditioned mediums, prepared at 40 degrees C were run on SDS-polyacrylamide gel electrophoresis and have shown the presence of a distinct protein band at a m.w. region of 55 kDa. These results confirm our previous studies that increasing the temperature around the muscles induces the HRS that causes the decrease in the contractile response.  (+info)

Inhibition of Rho-associated kinase blocks agonist-induced Ca2+ sensitization of myosin phosphorylation and force in guinea-pig ileum. (23/652)

Ca2+ sensitization of smooth muscle contraction involves the small GTPase RhoA, inhibition of myosin light chain phosphatase (MLCP) and enhanced myosin regulatory light chain (LC20) phosphorylation. A potential effector of RhoA is Rho-associated kinase (ROK). The role of ROK in Ca2+ sensitization was investigated in guinea-pig ileum. Contraction of permeabilized muscle strips induced by GTPgammaS at pCa 6.5 was inhibited by the kinase inhibitors Y-27632, HA1077 and H-7 with IC50 values that correlated with the known Ki values for inhibition of ROK. GTPgammaS also increased LC20 phosphorylation and this was prevented by HA1077. Contraction and LC20 phosphorylation elicited at pCa 5.75 were, however, unaffected by HA1077. Pre-treatment of intact tissue strips with HA1077 abolished the tonic component of carbachol-induced contraction and the sustained elevation of LC20 phosphorylation, but had no effect on the transient or sustained increase in [Ca2+]i induced by carbachol. LC20 phosphorylation and contraction dynamics suggest that the ROK-mediated increase in LC20 phosphorylation is due to MLCP inhibition, not myosin light chain kinase activation. In the absence of Ca2+, GTPgammaS stimulated 35S incorporation from [35S]ATPgammaS into the myosin targeting subunit of MLCP (MYPT). The enhanced thiophosphorylation was inhibited by HA1077. No thiophosphorylation of LC20 was detected. These results indicate that ROK mediates agonist-induced increases in myosin phosphorylation and force by inhibiting MLCP activity through phosphorylation of MYPT. Under Ca2+-free conditions, ROK does not appear to phosphorylate LC20 in situ, in contrast to its ability to phosphorylate myosin in vitro. In particular, ROK activation is essential for the tonic phase of agonist-induced contraction.  (+info)

Impaired microvascular response to cholinergic stimuli in primary Sjogren's syndrome. (24/652)

OBJECTIVE: Signs of a parasympathetic dysfunction have been revealed in primary Sjogren's syndrome (SS). Its role in the pathogenesis and the clinical picture of the disease is not clear. To investigate the responsiveness of SS patients to a cholinergic agonist, a model was used involving examination of the cutaneous microcirculation. The microvascular response to the administration of carbachol was measured, a muscarinic cholinergic agonist. METHODS: Twenty two SS patients and 12 controls were examined. Carbachol and 0.9% saline solution were administered intracutaneously into the forearm skin at two distinct places. Skin blood flow (SBF) in the injected areas was measured continuously before and for 10 minutes after the injections by means of a laser Doppler perfusion monitor. The increase in SBF in response to carbachol (dSBF), reflecting vasodilatation, was calculated by a formula including the baseline and the maximum SBF values after the injections of carbachol and saline solution. RESULTS: The vasodilatation was significantly lower in SS patients than in the controls (mean dSBF: 2.1 (range: 1.0-4.5) versus 3.3 (range: 1.7-7.6), p=0.02). With non-responder patients defined as those in whom a smaller response was observed than in any of the controls, 11 of the 22 SS patients proved to be non-responders to carbachol. Comparisons of demographic, clinical and laboratory characteristics and HLA class II genotypes between responder and non-responder SS patients did not show any significant differences. CONCLUSIONS: A diminished or absent response to carbachol indicates a cholinergic dysfunction in SS patients. A disturbance in the neurotransmission at a receptorial or postreceptorial level is hypothesised. Unresponsiveness to cholinergic stimuli may contribute to exocrine insufficiency.  (+info)