Genes for the synthesis of the osmoprotectant glycine betaine from choline in the moderately halophilic bacterium Halomonas elongata DSM 3043, USA. (73/2759)

The genes involved in the oxidative pathway of choline to glycine betaine in the moderate halophile Halomonas elongata DSM 3043 were isolated by functional complementation of an Escherichia coli strain defective in glycine betaine synthesis. The cloned region was able to mediate the oxidation of choline to glycine betaine in E. coli, but not the transport of choline, indicating that the gene(s) involved in choline transport are not clustered with the glycine betaine synthesis genes. Nucleotide sequence analysis of a 4.6 kb segment from the cloned DNA revealed the occurrence of three ORFs (betIBA) apparently arranged in an operon. The deduced betI gene product exhibited features typical for DNA-binding regulatory proteins. The deduced BetB and BetA proteins showed significant similarity to soluble glycine betaine aldehyde dehydrogenases and membrane-bound choline dehydrogenases, respectively, from a variety of organisms. Evidence is presented that BetA is able to oxidize both choline and glycine betaine aldehyde and therefore can mediate both steps in the synthesis of glycine betaine.  (+info)

Lysine uptake by mammary gland tissue from lactating sows. (74/2759)

Kinetic properties and substrate specificity of the lysine transport system in porcine mammary gland were studied using mammary tissue explants from nine lactating sows. Sodium dependence of lysine uptake was determined by replacing sodium in the medium with choline. Kinetic parameters of lysine uptake were determined using lysine concentrations from 5 microM to 5.12 mM. Competition of lysine uptake by other amino acids was determined using the cationic amino acids, arginine and ornithine, and using other essential amino acids. Transport of lysine was time-dependent and was unaffected by replacing sodium with choline. Lysine uptake occurred by a transport mechanism with a Km of approximately 1.4 mM and a Vmax of 7.9 mmol x kg cell water(-1) x 30 min(-1). Lysine uptake was inhibited by arginine and ornithine and by high concentrations of L-alanine, L-methionine, L-leucine, cycloleucine, and D-lysine, but not by 2-(methylamino)-isobutyric acid. This transport mechanism is the primary system responsible for uptake of cationic amino acids in lactating sow mammary tissue. The relatively high Km, compared with physiological blood concentrations of lysine, indicates that the kinetic properties of the lysine transport system should not be limiting to milk protein synthesis. Transmembrane transport of lysine by lactating sow mammary tissue should be a direct function of plasma concentrations. However, interactions of other amino acids with the uptake system may affect lysine uptake.  (+info)

Prejunctional muscarinic inhibitory control of acetylcholine release in the human isolated detrusor: involvement of the M4 receptor subtype. (75/2759)

1. Experiments were carried out in human detrusor strips to characterize muscarinic receptor subtypes involved in the prejunctional regulation of acetylcholine (ACh) release from cholinergic nerve terminals, and in the postjunctional smooth muscle contractile response. 2. In detrusor strips preincubated with [3H]-choline, electrical field stimulation (600 pulses) delivered in six trains at 10 Hz produced a tritium outflow and a contractile response. In the presence of 10 microM paraoxon (to prevent ACh degradation) the tritium outflow was characterized by HPLC analysis as [3H]-ACh (76%) and [3H]-choline (24%). 3. Electrically-evoked [3H]-ACh release was abolished by tetrodotoxin (TTX: 300 nM) and unaffected by hexamethonium (10 microM), indicating a postganglionic event. It was reduced by physostigmine (100 nM) and the muscarinic receptor agonist, muscarone (10 nM-1 microM), and enhanced by atropine (0.1-100 nM). These findings indicate the presence of a muscarinic negative feedback mechanism controlling ACh release. 4. The effects of various subtype-preferring muscarinic receptor antagonists were evaluated on [3H]-ACh release and muscle contraction. The rank potency (-log EC50) orders at pre- and postjunctional level were: atropine > or = 4-diphenyl-acetoxy-N-piperidine (4-DAMP) > mamba toxin 3 (MT-3) > tripitramine > para-fluorohexahydrosiladiphenidol (pF-HHSiD) > or = methoctramine > or = pirenzepine > tripinamide, and atropine > or = 4-DAMP > pF-HHSiD >> pirenzepine = tripitramine > tripinamide > methoctramine >> MT-3, respectively. 5. The comparison of pre- and post-junctional potencies and the relationship analysis with the affinity constants at human cloned muscarinic receptor subtypes indicates that the muscarinic autoreceptor inhibiting ACh release in human detrusor is an M4 receptor, while the receptor involved in muscular contraction belongs to the M3 subtype.  (+info)

Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations. (76/2759)

Glycinebetaine (betaine) affords osmoprotection in bacteria, plants and animals, and protects cell components against harsh conditions in vitro. This and a compelling body of other evidence have encouraged the engineering of betaine production in plants lacking it. We have installed the metabolic step for oxidation of choline, a ubiquitous substance, to betaine in three diverse species, Arabidopsis, Brassica napus, and tobacco (Nicotiana tabacum), by constitutive expression of a bacterial choline oxidase gene. The highest levels of betaine in independent transgenics were 18.6, 12.8, and 13 micromol g(-1) dry weight, respectively, values 10- to 20-fold lower than the levels found in natural betaine producers. However, choline-fed transgenic plants synthesized substantially more betaine. Increasing the choline supplementation further enhanced betaine synthesis, up to 613 micromol g(-1) dry weight in Arabidopsis, 250 micromol g(-1) dry weight in B. napus, and 80 micromol g(-1) dry weight in tobacco. These studies demonstrate the need to enhance the endogenous choline supply to support accumulation of physiologically relevant amounts of betaine. A moderate stress tolerance was noted in some but not all betaine-producing transgenic lines based on relative shoot growth. Furthermore, the responses to stresses such as salinity, drought, and freezing were variable among the three species.  (+info)

Isoflurane increases the apparent agonist affinity of the nicotinic acetylcholine receptor by reducing the microscopic agonist dissociation constant. (77/2759)

BACKGROUND: Isoflurane increases the apparent agonist affinity of ligand-gated ion channels. This action reflects a reduction in the receptor's agonist dissociation constant and/or the preopen/open channel state equilibrium. To evaluate the effect of isoflurane on each of these kinetic constants in the nicotinic acetylcholine receptor, the authors analyzed isoflurane's actions on (1) the binding of the fluorescent agonist Dns-C6-Cho to the nicotinic acetylcholine receptor's agonist self-inhibition site and (2) the desensitization kinetics induced by the binding of the weak partial agonist suberyldicholine. METHODS: The dissociation constant for Dns-C6-Cho binding to the self-inhibitory site was determined using stopped-flow fluorescence spectroscopy. The values of the kinetic constants for agonist binding, channel gating, and desensitization were determined by modeling the suberyldicholine concentration-dependence of the apparent rate of desensitization. RESULTS: Isoflurane did not significantly alter the dissociation constant for Dns-C6-Cho binding to the self-inhibitory site even at a concentration as high as 1.5 mM, the highest concentration studied. At this concentration, isoflurane substantially reduced the dissociation constant for suberyldicholine binding to its channel opening site by 97% from 17 +/- 5 microM to 0.5 +/- 0.2 microM, whereas the preopen/open channel state equilibrium was reduced only from 19.1 to 5 +/- 1. CONCLUSIONS: Isoflurane increases the apparent agonist affinity of the nicotinic acetylcholine receptor primarily by reducing the agonist dissociation constant of the site responsible for channel opening rather than altering channel gating kinetics.  (+info)

Caffeine, carnitine and choline supplementation of rats decreases body fat and serum leptin concentration as does exercise. (78/2759)

The effect of a combination of caffeine, carnitine and choline with or without exercise on changes in body weight, fat pad mass, serum leptin concentration and metabolic indices was determined in 20 male, 7-wk-old Sprague-Dawley rats. They were given free access to a nonpurified diet without or with caffeine, carnitine and choline at concentrations of 0.1, 5 and 11.5 g/kg diet, respectively. In a 2x2 factorial design, one-half of each dietary group was exercised, and the other half was sedentary. Body weight and food intake of all rats were measured every day for 28 d. Rats were killed and blood and tissue samples were collected and analyzed for biochemical markers. Food intake of the groups was not different, but the body weight was significantly reduced by exercise in both dietary groups. Fat pad weights and total lipids of epididymal, inguinal and perirenal regions were significantly reduced by the supplements as well as by exercise. Regardless of exercise, supplements significantly lowered triglycerides in serum but increased levels in skeletal muscle. Serum leptin concentrations were equally lowered by supplements and exercise. Serum leptin was correlated with body weight (r = 0.55, P< or =0.01), fat pad weight (r = 0.82, P< or =0.001) and serum glucose (r = 0.51, P< or =0.05). We conclude that the indices of body fat loss due to dietary supplements were similar to those due to mild exercise, and there were no interactive effects of the two variables.  (+info)

Choline is required by tilapia when methionine is not in excess. (79/2759)

Choline is essential in diets fed to most young vertebrates, but previous studies did not confirm the essentiality of choline in diets fed to tilapia. Two experiments were conducted to evaluate the essentiality of dietary choline in such diets. The basal diet used in both experiments contained 32 g crude protein/100 g diet (10.1 g crude protein from casein and gelatin, and 21.9 g from a crystalline L-amino acid mixture). The total sulfur amino acid (TSAA) concentration of the basal diet was 0.28 g/100 g diet, Met:Cys 89:11. In Experiment 1, a 4x2 design was used in which crystalline L-methionine was added to the basal diet resulting in four levels of TSAA (0.28, 0.50, 0.75 or 1.0 g/100 g diet, Met:Cys 89:11, 94:6, 96:4, or 97:3, respectively). At each level of TSAA, diets also contained either 0 or 1 g choline/kg diet supplied as choline chloride. Weight gain, feed efficiency (FE) and serum methionine concentrations were significantly affected by dietary TSAA concentration, but not by dietary choline concentration or the interaction between TSAA and choline. Weight gain, feed efficiency and serum methionine concentrations indicated that the TSAA requirement was 0.5 g/100 g diet. In the second experiment, diets were formulated to contain either 0.28 or 0.5 g TSAA/100 g diet, Met:Cys 89:11 or 94:6, respectively, and graded levels of choline ranging from 1 to 4 g/kg diet in gradations of 1 g/kg. Dietary methionine significantly affected weight gain and FE, whereas dietary choline significantly affected weight gain, FE and survival, and the interaction of methionine and choline significantly affected weight gain. Fish fed diets containing 0.5 g TSAA/100 g diet and 3 g choline chloride/kg diet exhibited the highest weight gain, feed efficiency and survival. On the basis of these data, it seems clear that juvenile tilapia require choline in certain dietary formulations.  (+info)

Choline release and inhibition of phosphatidylcholine synthesis precede excitotoxic neuronal death but not neurotoxicity induced by serum deprivation. (80/2759)

N-Methyl-d-aspartate (NMDA) receptor overactivation has been proposed to induce excitotoxic neuronal death by enhancing membrane phospholipid degradation. In previous studies, we have shown that NMDA releases choline and reduces membrane phosphatidylcholine in vivo. We now observed that glutamate and NMDA induce choline release in primary neuronal cortical cell cultures. This effect is Ca(2+)-dependent and is blocked by MK-801 ((+)-5-methyl-10, 11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate). In cortical neurons, the NMDA receptor-mediated choline release precedes excitotoxic cell death but not neuronal death induced by either osmotic lysis or serum deprivation. Glutamate, at concentrations that release arachidonic acid, does not release choline in cerebellar granule cells, unless these cells are rendered susceptible to excitotoxic death by energy deprivation. The NMDA-evoked release of choline is not mediated by phospholipases A(2) or C. Moreover, NMDA does not activate phospholipase D in cortical cells. However, NMDA inhibits incorporation of [methyl-(3)H]choline into both membrane phosphatidylcholine and sphingomyelin. These results show that the increase in extracellular choline induced by NMDA receptor activation is directly related with excitotoxic cell death and indicate that choline release is an early event of the excitotoxic process produced by inhibition of phosphatidylcholine synthesis and not by activation of membrane phospholipid degradation.  (+info)