Both acidic and basic amino acids in an amphitropic enzyme, CTP:phosphocholine cytidylyltransferase, dictate its selectivity for anionic membranes. (49/270)

Amphitropic proteins are regulated by reversible membrane interaction. Anionic phospholipids generally promote membrane binding of such proteins via electrostatics between the negatively charged lipid headgroups and clusters of basic groups on the proteins. In this study of one amphitropic protein, a cytidylyltransferase (CT) that regulates phosphatidylcholine synthesis, we found that substitution of lysines to glutamine along both interfacial strips of the membrane-binding amphipathic helix eliminated electrostatic binding. Unexpectedly, three glutamates also participate in the selectivity for anionic membrane surfaces. These glutamates become protonated in the low pH milieu at the surface of anionic, but not zwitterionic membranes, increasing protein positive charge and hydrophobicity. The binding and insertion into lipid vesicles of a synthetic peptide containing the three glutamates was pH-dependent with an apparent pK(a) that varied with anionic lipid content. Glutamate to glutamine substitution eliminated the pH dependence of the membrane interaction, and reduced anionic membrane selectivity of both the peptide and the whole CT enzyme examined in cells. Thus anionic lipids, working via surface-localized pH effects, can promote membrane binding by modifying protein charge and hydrophobicity, and this novel mechanism contributes to the membrane selectivity of CT in vivo.  (+info)

Phosphatidylcholine and cell death. (50/270)

Phosphatidylcholine (PC) constitutes a major portion of cellular phospholipids and displays unique molecular species in different cell types and tissues. Inhibition of the CDP-choline pathway in most mammalian cells or overexpression of the hepatic phosphatidylethanolamine methylation pathway in hepatocytes leads to perturbation of PC homeostasis, growth arrest or even cell death. Although many agents that perturb PC homeostasis and induce cell death have been identified, the signaling pathways that mediate this cell death have not been well defined. This review summarizes recent progress in understanding the relationship between PC homeostasis and cell death.  (+info)

Oncogenic Ha-Ras transformation modulates the transcription of the CTP:phosphocholine cytidylyltransferase alpha gene via p42/44MAPK and transcription factor Sp3. (51/270)

We have shown previously that expression of the murine CTP:phosphocholine cytidylyltransferase (CT) alpha gene is regulated during cell proliferation (Golfman, L. S., Bakovic, M., and Vance, D. E. (2001) J. Biol. Chem. 276, 43688-43692). We have now characterized the role of Ha-Ras in the transcriptional regulation of the CTalpha gene. The expression of CTalpha and CTbeta2 proteins and mRNAs was stimulated in C3H10T1/2 murine fibroblasts expressing oncogenic Ha-Ras. Incubation of cells with the specific inhibitor (PD98059) of p42/44(MAPK) decreased the expression of both CT isoforms. Transfection of fibroblasts with CTalpha promoter-luciferase constructs resulted in an approximately 2-fold enhanced luciferase expression in Ha-Ras-transformed, compared with nontransformed, fibroblasts. Electromobility shift assays indicated enhanced binding of the Sp3 transcription factor to the CTalpha promoter in Ha-Ras-transformed cells. Expression of several forms of Sp3 was increased in nuclear extracts of Ha-Ras-transformed fibroblasts compared with nontransformed cells. Tyrosine phosphorylation of one Sp3 form was decreased, whereas phosphorylation of two other forms of Sp3 was increased in nuclear extracts of Ha-Ras-transformed cells. When control fibroblasts were transfected with a Sp3-expressing plasmid, an enhanced expression of CTalpha and CTbeta was observed. However, the expression of CTalpha or CTbeta was not increased in Ha-Ras-transformed cells transfected with a Sp3 plasmid presumably because expression was already maximally enhanced. The results suggest that Sp3 is a downstream effector of a Ras/p42/44(MAPK) signaling pathway which increases CTalpha gene transcription.  (+info)

A search for doxycycline-dependent mutations that increase Drosophila melanogaster life span identifies the VhaSFD, Sugar baby, filamin, fwd and Cctl genes. (52/270)

BACKGROUND: A P-type transposable element called PdL has been engineered with a doxycycline-inducible promoter directed out through the 3' end of the element. Insertion of PdL near the 5' end of a gene often yields doxycycline-dependent overexpression of that gene and a mutant phenotype. This functional genomics strategy allows for efficient screening of large numbers of genes for overexpression phenotypes. RESULTS: PdL was mobilized to around 10,000 new locations in the Drosophila melanogaster genome and used to search for genes that would extend life span when overexpressed. Six lines were identified in which there was a 5-17% increase in life span in the presence of doxyxcycline. The mutations were molecularly characterized and in each case a gene was found to be overexpressed using northern blots. Two genes did not have previously known phenotypes and are implicated in membrane transport: VhaSFD encodes a regulatory subunit of the vacuolar ATPase proton pump (H+-ATPase), whereas Sugar baby (Sug) is related to a maltose permease from Bacillus. Three PdL mutations identified previously characterized genes: filamin encodes the homolog of an actin-polymerizing protein that interacts with presenilins. four wheel drive (fwd) encodes a phosphatidylinositol-4-kinase (PI 4-kinase) and CTP:phosphocholine cytidylyltransferase-l (Cctl) encodes the rate-limiting enzyme in phosphatidylcholine synthesis. Finally, an apparently novel gene (Red herring, Rdh) was found in the first intron of the encore gene. CONCLUSIONS: Screening for conditional mutations that increase Drosophila life span has identified genes implicated in membrane transport, phospholipid metabolism and signaling, and actin cytoskeleton organization.  (+info)

Identification of Ets-1 as an important transcriptional activator of CTP:phosphocholine cytidylyltransferase alpha in COS-7 cells and co-activation with transcriptional enhancer factor-4. (53/270)

Phosphatidylcholine biosynthesis via the CDP-choline pathway is primarily regulated by CTP:phosphocholine cytidylyltransferase (CT). Transcriptional enhancer factor-4 (TEF-4) enhances the transcription of CTalpha in COS-7 cells by interactions with the basal transcription machinery (Sugimoto, H., Bakovic, M., Yamashita, S., and Vance, D.E. (2001) J. Biol. Chem. 276,12338-12344). To identify the most important transcription factor involved in basal CTalpha transcription, we made CTalpha promoter-deletion and -mutated constructs linked to a luciferase reporter and transfected them into COS-7 cells. The results indicate that an important site regulating basal CTalpha transcription is -53/-47 (GACTTCC), which is a putative consensus-binding site of Ets transcription factors (GGAA) in the opposite orientation. Gel shift analyses indicated the existence of a binding protein for -53/-47 (GACTTCC) in nuclear extracts of COS-7 cells. When anti-Ets-1 antibody was incubated with the probe in gel shift analyses, the intensity of the binding protein was decreased. The binding of endogenous Ets-1 to the promoter probe was increased when TEF-4 was expressed; however, the amount of Ets-1 detected by immunoblotting was unchanged. When cells were transfected with Ets-1 cDNA, the luciferase activity of CTalpha promoter constructs was greatly enhanced. Co-transfection experiments with Ets-1 and TEF-4 showed enhanced expression of reporter constructs as well as CTalpha mRNA. These results suggest that Ets-1 is an important transcriptional activator of the CTalpha gene and that Ets-1 activity is enhanced by TEF-4.  (+info)

Regulation of the CDP-choline pathway by sterol regulatory element binding proteins involves transcriptional and post-transcriptional mechanisms. (54/270)

The synthesis of phosphatidylcholine (PtdCho) by the CDP-choline pathway is under the control of the rate-limiting enzyme CTP:phosphocholine cytidylyltransferase (CCT). Sterol regulatory element binding proteins (SREBPs) have been proposed to regulate CCT at the transcriptional level, or via the synthesis of lipid activators or substrates of the CDP-choline pathway. To assess the contributions of these two mechanisms, we examined CCTalpha expression and PtdCho synthesis by the CDP-choline pathway in cholesterol and fatty acid auxotrophic CHO M19 cells inducibly expressing constitutively active nuclear forms of SREBP1a or SREBP2. Induction of either SREBP resulted in increased expression of mRNAs for sterol-regulated genes, elevated fatty acid and cholesterol synthesis (>10-50-fold) and increased PtdCho synthesis (2-fold). CCTalpha mRNA was increased 2-fold by enforced expression of SREBP1a or SREBP2. The resultant increase in CCTalpha protein and activity (2-fold) was restricted primarily to the soluble fraction of cells, and increased CCTalpha activity in vivo was not detected. Inhibition of the synthesis of fatty acids or their CoA esters by cerulenin or triacsin C respectively following SREBP induction effectively blocked the accompanying elevation in PtdCho synthesis. Thus PtdCho synthesis was driven by increased synthesis of fatty acids or a product thereof. These data show that transcriptional activation of CCTalpha is modest relative to that of other SREBP-regulated genes, and that stimulation of PtdCho synthesis by SREBPs in CHO cells is due primarily to increased fatty acid synthesis.  (+info)

Activation of CTP:phosphocholine cytidylyltransferase alpha expression during the S phase of the cell cycle is mediated by the transcription factor Sp1. (55/270)

An essential step during cell division is induction of phosphatidylcholine biosynthesis. In this pathway, CTP:phosphocholine cytidylyltransferase alpha (CT alpha) plays an important regulatory role. Previous studies (Golfman, L. S., Bakovic, M., and Vance, D. E. (2001) J. Biol. Chem. 276, 43688-43692) demonstrated that CT alpha mRNA accumulates during S phase in preparation for cellular mitosis. We now demonstrate that increased binding of the transcription factor Sp1 to the proximal promoter of CT alpha is responsible for increased transcription during the S phase. The Sp1 binding element present in position -67/-62 is essential for activation, and the Sp1 site in position -31/-9 is required to enhance transcription. Inhibition of Sp1 expression by RNA interference abolished the enhanced expression of CT alpha. Immunoprecipitation studies demonstrated that Sp1 interacts with cyclin E, cyclin A, and cyclin-dependent kinase 2 during the S phase. We conclude that Sp1 binding to the CT alpha proximal promoter is necessary to enhance transcription during the S phase. This is the first elucidation of a mechanism by which expression of a key enzyme in phospholipid biosynthesis is regulated during the cell cycle.  (+info)

Insights into the requirement of phosphatidylcholine synthesis for liver function in mice. (56/270)

Phosphatidylcholine (PC) is made in the liver by the CDP-choline pathway and via phosphatidylethanolamine N-methyltransferase (PEMT), which catalyzes the conversion of phosphatidylethanolamine to PC. Unexpectedly, hepatic apolipoprotein B-100 secretion is inhibited in male, but not female, Pemt-/- mice (Noga, A. A., Y. Zhao, and D. E. Vance. 2002. J. Biol. Chem. 277: 42358-42365; Noga, A. A., and D. E. Vance. 2003. J. Biol. Chem. 278: 21851-21859). To gain further insight into this process, we compared PC metabolism in male and female mice fed chow or a high-fat/high-cholesterol (HF/HC) diet. Immunoblot analyses demonstrated that twice as much PEMT2 was present in livers from female compared with male mice. In contrast, assays of CTP:phosphocholine cytidylyltransferase from livers of Pemt+/+ mice demonstrated more active cytidylyltransferase in male than in female mice. Secretion of PEMT-derived PC into lipoproteins was examined in vivo by injection of mice with [methyl-3H]methionine in the presence of Triton WR1339. The PEMT-derived PC shifts to smaller-sized particles in response to a HF/HC diet, but only in male mice. Secretion of PEMT-derived PC into bile was enhanced in mice fed a HF/HC diet. These results demonstrate that the synthesis and targeting of PC produced by the PEMT pathway in the livers of mice differs in a gender- and diet-specific manner.  (+info)