Caspase processing and nuclear export of CTP:phosphocholine cytidylyltransferase alpha during farnesol-induced apoptosis. (41/270)

CTP:phosphocholine cytidylyltransferase alpha (CCT alpha) is a nuclear enzyme that catalyzes the rate-limiting step in the CDP-choline pathway, the primary route for synthesis of phosphatidylcholine (PtdCho) in eukaryotic cells. Induction of apoptosis by farnesol (FOH) and other cytotoxic drugs has been shown to alter PtdCho synthesis via the CDP-choline pathway. Here we report that FOH-induced apoptosis in CHO cells caused a dose-dependent activation of CCT alpha and inhibition of the final step in the pathway, resulting in a biphasic effect on PtdCho synthesis. Activation of CCT alpha was accompanied by enzyme translocation to the nuclear envelope within 30 min of FOH addition to cells. Following translocation to membranes, CCT alpha was exported from the nucleus and underwent caspase-mediated proteolysis that coincided with poly(ADP-ribose) polymerase cleavage. Site-directed mutagenesis and in vivo and in vitro expression studies mapped a caspase 6 and/or 8 cleavage site to TEED(28 downward arrow)G, the final residue in the CCT alpha nuclear localization signal. Nuclear export of CCT alpha appeared to be an active process in FOH-treated CHO cells that was independent of caspase removal of the nuclear localization signal. Caspase cleavage of CCT alpha occurred during UV or chelerythrine-induced apoptosis; however, nuclear membrane translocation and nuclear export were not evident under these conditions. Thus, caspase cleavage of CCT alpha was a late feature of several apoptotic programs that occurred in the nucleus or at the nuclear envelope. Activation and nuclear export of CCT alpha were early events in FOH-induced apoptosis that contributed to altered PtdCho synthesis and, in conjunction with caspase cleavage, excluded CCT alpha from the nucleus.  (+info)

CTP:phosphocholine cytidylyltransferase and protein kinase C recognize different physical features of membranes: differential responses to an oxidized phosphatidylcholine. (42/270)

Protein kinase C (PKC) and CTP:phosphocholine cytidylyltransferase (CT) are two examples of enzymes that are regulated by reversible binding to membranes, and this binding is influenced by membrane physical properties. CT activation by oxidized phosphatidylcholines was recently demonstrated and was linked to the acyl chain disordering effect of the oxidized species (Biochemistry 38, 15606). In this paper, we compare the responses of PKC and CT to an oxidized PC, and investigate the physical properties of lipid bilayers that modulate the activity of these enzymes. We show that 1-palmitoyl, 2-(11,15 dihydroxy) eicosatrienoyl PC (diOH-PAPC) caused less of an increase in the temperature of the lamellar to hexagonal II transition (T(H)) of an unsaturated PE, compared to its parent, PAPC. Using a polarity-sensitive interfacial probe, we also found evidence to suggest that this oxidized PC increases interfacial packing pressure. We found that whereas diOH-PAPC activates CT, it inhibits PKC relative to the parent PAPC. The activities of both CT and PKC are known to increase in the presence of non-lamellar forming lipids. The greater activating effect of diOH-PAPC compared with PAPC, is consistent with a stimulation of the activity of CT by negative curvature strain. However, this is not the case with PKC, for which we suggest that surface packing pressure is of prime importance.  (+info)

Maternal loading with very low-density lipoproteins stimulates fetal surfactant synthesis. (43/270)

We examined whether administration of very low-density lipoproteins (VLDL) to pregnant rats increases surfactant phosphatidylcholine (PtdCho) content in fetal pre-type II alveolar epithelial cells. VLDL-triglycerides are hydrolyzed to fatty acids by lipoprotein lipase (LPL), an enzyme activated by heparin. Fatty acids released by LPL can incorporate into the PtdCho molecule or activate the key biosynthetic enzyme cytidylyltransferase (CCT). Dams were given BSA, heparin, VLDL, or VLDL with heparin intravenously. Radiolabeled VLDL given to the pregnant rat crossed the placenta and was distributed systemically in the fetus and incorporated into disaturated PtdCho (DSPtdCho) in pre-type II cells. Maternal administration of VLDL with heparin increased DSPtdCho content in cells by 45% compared with control (P < 0.05). VLDL produced a dose-dependent, saturable, and selective increase in CCT activity. VLDL did not significantly alter immunoreactive CCT content but increased palmitic, stearic, and oleic acids in pre-type II cells. Furthermore, hypertriglyceridemic apolipoprotein E knockout mice contained significantly greater levels of DSPtdCho content in alveolar lavage and CCT activity compared with either LDL receptor knockout mice or wild-type controls that have normal serum triglycerides. Thus the nutritional or genetic modulation of serum VLDL-triglycerides provides specific fatty acids that stimulate PtdCho synthesis and CCT activity thereby increasing surfactant content.  (+info)

Phospholipase C inhibitors and prostaglandins differentially regulate phosphatidylcholine synthesis in rat renal papilla. Evidence of compartmental regulation of CTP:phosphocholine cytidylyltransferase and CDP-choline:1,2-diacylglycerol cholinephosphotransferase. (44/270)

Phosphatidylcholine (PC) is the most abundant phospholipid in mammalian cell membranes. Several lines of evidence support that PC homeostasis is preserved by the equilibrium between PC biosynthetic enzymes and phospholipases catabolic activities. We have previously shown that papillary synthesis of PC depends on prostaglandins (PGs) that modulate biosynthetic enzymes. In papillary tissue, under bradikynin stimulus, arachidonic acid (AA) mobilization (the substrate for PG synthesis) requires a previous phospholipase C (PLC) activation. Thus, in the present work, we study the possible involvement of PLC in PC biosynthesis and its relationship with PG biosynthetic pathway on the maintenance of phospholipid renewal in papillary membranes; we also evaluated the relevance of CDP-choline pathway enzymes compartmentalization. To this end, neomycin, U-73122 and dibutiryl cyclic AMP, reported as PLC inhibitors, were used to study PC synthesis in rat renal papilla. All the PLC inhibitors assayed impaired PC synthesis. PG synthesis was also blocked by PLC inhibitors without affecting cyclooxygenase activity, indicating a metabolic connection between both pathways. However, we found that PC biosynthesis decrease in the presence of PLC inhibitors was not a consequence of PG decreased synthesis, suggesting that basal PLC activity and PGs exert their effect on different targets of PC biosynthetic pathway. The study of PC biosynthetic enzymes showed that PLC inhibitors affect CTP:phosphocholine cytidylyltransferase (CCT) activity while PGD(2) operates on CDP-choline:1,2-diacylglycerol cholinephosphotransferase (CPT), both activities associated to papillary enriched-nuclei fraction. The present results suggest that renal papillary PC synthesis is a highly regulated process under basal conditions. Such regulation might occur at least at two different levels of the CDP-choline pathway: on the one hand, PLC operates on CCT activity; on the other, while PGs regulate CPT activity.  (+info)

Alkyl-lysophospholipid accumulates in lipid rafts and induces apoptosis via raft-dependent endocytosis and inhibition of phosphatidylcholine synthesis. (45/270)

The synthetic alkyl-lysophospholipid (ALP), 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine, is an antitumor agent that acts on cell membranes and can induce apoptosis. We investigated how ALP is taken up by cells, how it affects de novo biosynthesis of phosphatidylcholine (PC), and how critical this is to initiate apoptosis. We compared an ALP-sensitive mouse lymphoma cell line, S49, with an ALP-resistant variant, S49(AR). ALP inhibited PC synthesis at the CTP:phosphocholine cytidylyltransferase (CT) step in S49 cells, but not in S49(AR) cells. Exogenous lysophosphatidylcholine, providing cells with an alternative way (acylation) to generate PC, rescued cells from ALP-induced apoptosis, indicating that continuous rapid PC turnover is essential for cell survival. Apoptosis induced by other stimuli that do not target PC synthesis remained unaffected by lysophosphatidylcholine. Using monensin, low temperature and albumin back-extraction, we demonstrated that ALP is internalized by endocytosis, a process defective in S49(AR) cells. This defect neither involved clathrin-coated pit- nor fluid-phase endocytosis, but depended on lipid rafts, because disruption of these microdomains with methyl-beta-cyclodextrin or filipin (sequestering cholesterol) or bacterial sphingomyelinase reduced uptake of ALP. Furthermore, ALP was found accumulated in isolated rafts and disruption of rafts also prevented the inhibition of PC synthesis and apoptosis induction in S49 cells. In summary, ALP is internalized by raft-dependent endocytosis to inhibit PC synthesis, which triggers apoptosis.  (+info)

Phosphatidylcholine synthesis is elevated in neuronal models of Gaucher disease due to direct activation of CTP:phosphocholine cytidylyltransferase by glucosylceramide. (46/270)

Glucosylceramide (GlcCer) accumulates in the inherited metabolic disorder, Gaucher disease, because of the defective activity of lysosomal glucocerebrosidase. We previously demonstrated that upon GlcCer accumulation, cultured hippocampal neurons exhibit modified growth patterns, altered endoplasmic reticulum density, and altered calcium release from intracellular stores. We here examined the relationship between GlcCer accumulation and phospholipid synthesis. After treatment of neurons with an active site-directed inhibitor of glucocerebrosidase, or in neurons obtained from a mouse model of Gaucher disease, [14C]methyl choline incorporation into [14C]phosphatidylcholine ([14C]PC) and [14C]sphingomyelin was elevated, as were [14C]CDP-choline levels, suggesting that CTP:phosphocholine cytidylyltransferase (CCT) is activated. Indeed, CCT activity was elevated in neurons that had accumulated GlcCer. GlcCer, but not galactosylceramide (GalCer), stimulated CCT activity in rat brain homogenates, and significantly higher levels of CCT were membrane associated in cortical homogenates from a mouse model of Gaucher disease compared with wild-type mice. Because CCT mRNA and protein levels were unaltered in either neurons or brain tissue that had accumulated GlcCer, it appeared likely that GlcCer activates CCT by a post-translational mechanism. This was verified by examination of the effect of GlcCer on CCT purified about 1200-fold from rat brain. GlcCer stimulated CCT activity, with stimulation observed at levels as low as 2.5 mol% and with maximal activation reached at 10 mol%. In contrast, GalCer had no effect. Together, these data demonstrate that GlcCer directly activates CCT, which results in elevated PC synthesis, which may account for some of the changes in growth rates observed upon neuronal GlcCer accumulation.  (+info)

Inhibition of phosphatidylcholine synthesis induces expression of the endoplasmic reticulum stress and apoptosis-related protein CCAAT/enhancer-binding protein-homologous protein (CHOP/GADD153). (47/270)

Inhibition of de novo synthesis of phosphatidylcholine (PC) by some anti-cancer drugs such as hexadecylphosphocholine leads to apoptosis in various cell lines. Likewise, in MT58, a mutant Chinese hamster ovary (CHO) cell line containing a thermo-sensitive mutation in CTP:phosphocholine cytidylyltransferase (CT), an important regulatory enzyme in the CDP-choline pathway, inhibition of PC synthesis causes PC depletion. Cellular perturbations like metabolic insults and unfolded proteins can be registered by the endoplasmic reticulum (ER) and result in ER stress responses, which can lead eventually to apoptosis. In this study we investigated the effect of PC depletion on the ER stress response and ER-related proteins. Shifting MT58 cells to the non-permissive temperature of 40 degrees C resulted in PC depletion via an inhibition of CT within 24 h. Early apoptotic features appeared in several cells around 30 h, and most cells were apoptotic within 48 h. The temperature shift in MT58 led to an increase of pro-apoptotic CCAAT/enhancer-binding protein-homologous protein (CHOP; also known as GADD153) after 16 h, to a maximum at 24 h. Incubation of wild-type CHO-K1 or CT-expressing MT58 cells at 40 degrees C did not induce differences in CHOP protein levels in time. In contrast, expression of the ER chaperone BiP/GRP78, induced by an increase in misfolded/unfolded proteins, and caspase 12, a protease specifically involved in apoptosis that results from stress in the ER, did not differ between MT58 and CHO-K1 cells in time when cultured at 40 degrees C. Furthermore, heat-shock protein 70, a protein that is stimulated by accumulation of abnormal proteins and heat stress, displayed similar expression patterns in MT58 and K1 cells. These results suggest that PC depletion in MT58 induces the ER-stress-related protein CHOP, without raising a general ER stress response.  (+info)

Inhibition of CTP:phosphocholine cytidylyltransferase by C(2)-ceramide and its relationship to apoptosis. (48/270)

Apoptosis induced by antitumor phospholipid analogs takes place after the inhibition of the CTP:phosphocholine cytidylyltransferase (CCT; EC 2.7.7.15) catalyzed step of phosphatidylcholine (PtdCho) biosynthesis. Exposure of cells to synthetic short-chain ceramide analogs also triggers apoptosis concomitant with decreased PtdCho biosynthesis, and the present study was undertaken to ascertain whether C(2)-ceramide inhibition of PtdCho synthesis is direct or secondary to other ceramide-mediated cellular responses. The exposure of COS-7 cells to either C(2)-ceramide, ET-18-OCH(3), or farnesol resulted in time- and dose-dependent apoptotic cell death. Cells treated with C(2)-ceramide or ET-18-OCH(3) selectively and immediately accumulated phosphocholine, whereas CDP-choline increased with farnesol treatment. In vitro assays of CCT activity demonstrated that C(2)-ceramide directly inhibited CCT. Comparison of different N-linked sphingosine derivatives suggests an inverse relationship between the length of the N-linked carbon chain and the derivatives ability to trigger apoptosis and inhibit CCT. Taken together, our results suggest CCT as a primary target for C(2)-ceramide inhibition that accounts for its cytotoxic effects.  (+info)