Determination of carnitine turnover in choline-deficient and cold-exposed rats. (9/288)

Two experimetns were conducted to study the body pool size and turnover rate of carnitine in rats. The turnover of carnitine was determined by injection of a tracer dose of L-[methyl-14C] carnitine. In experiment 1, carnitine body pool size and turnover in rats fed a choline-deficient basal diet were compared with values obtained from rats fed the basal diet supplemented with choline. These rats were maintained at 22degrees. In experiment 2, carnitine body pool size and turnover were determined in cold-exposed (2degrees) rats fed the choline-deficient basal diet. Carnitine body pool sizes of rats maintained 22degrees and fed the choline-deficient basal diet and the choline-supplemented diet were 35.6 and 41.8 mumoles/100 g body weight, respectively. Carnitine body pool size of rats maintained at 2degrees and fed a choline-deficient basal diet were 6.6 and 56.1 days, for rats fed a choline-supplemented diet, 6.7 and 40.2 days, and for rats maintained at 2degrees and fed a choline-deficient diet, 2.9 and 36.4 days, respectively. Carnitine turnover times obtained with DL-[14C]carnitine in our previous study longer than turnover times obtained with DL-[14C]carnitine in our previous study (j. nutr. 104, 782-792). These observations suggest that D-carnitine is not metabolized the same way as L-carnitine, and that D-carnitine is not cleared from the body within 2 days after injection. The results also suggest that carnitine metabolism can be influenced by the amount of choline in the diet and by cold exposure.  (+info)

Helicobacter pylori infection induces hyperammonaemia in Mongolian gerbils with liver cirrhosis. (10/288)

BACKGROUND AND AIMS: We previously reported the effect of Helicobacter pylori eradication on hyperammonaemia in patients with liver cirrhosis. However, the role of H pylori as a cause of hyperammonaemia is controversial. We developed an animal model with liver cirrhosis and investigated the effect of H pylori infection on hyperammonaemia. MATERIALS AND METHODS: Five week old male Mongolian gerbils were inoculated orally with broth culture of H pylori. Forty eight gerbils were divided into four groups. Gerbils not inoculated with H pylori were fed a commercial rodent diet (group A) or a choline deficient diet (group C). Gerbils inoculated with H pylori were fed the commercial rodent diet (group B) or the choline deficient diet (group D). Blood ammonia levels of the femoral vein and portal vein were measured 30 weeks later. RESULTS: All gerbils fed the choline deficient diet developed liver cirrhosis with fatty metamorphosis. The survival rate of group D was significantly lower than that of the other groups. Systemic and portal blood ammonia levels in group D were significantly higher than those in the other groups. CONCLUSIONS: H pylori infection induces hyperammonaemia in gerbils with liver cirrhosis.  (+info)

Adenoviral delivery of human and viral IL-10 in murine sepsis. (11/288)

Adenovirus (Ad) gene therapy has been proposed as a drug-delivery system for the targeted administration of protein-based therapies, including growth factors and biological response modifiers. However, inflammation associated with Ad transduction has raised concern about its safety and efficacy in acute inflammatory diseases. In the present report, intratracheal and i.v. administration of a first-generation adenoviral recombinant (E1,E3 deleted) either containing an empty cassette or expressing the anti-inflammatory cytokines viral or human IL-10 (IL-10) was administered to mice subjected to zymosan-induced multisystem organ failure or to acute necrotizing pancreatitis. Pretreatment of mice with the intratracheal instillation of Ad expressing human IL-10 or viral IL-10 reduced weight loss, attenuated the proinflammatory cytokine response, and reduced mortality in the zymosan-induced model, whereas pretreatment with a control adenoviral recombinant did not significantly exacerbate the response. Pretreatment of mice with pancreatitis using adenoviral vectors expressing IL-10 significantly reduced the degree of pancreatic and liver injury and liver inflammation when administered systemically, but not intratracheally. We conclude that adenoviral vectors can be administered prophylactically in acute inflammatory syndromes, and expression of the anti-inflammatory protein IL-10 can be used to suppress the underlying inflammatory process.  (+info)

Choline deficiency induces apoptosis in primary cultures of fetal neurons. (12/288)

Treatment of rats with choline during brain development results in long-lasting enhancement of spatial memory whereas choline deficiency has the opposite effect. Changes in rates of apoptosis may be responsible. We previously demonstrated that choline deficiency induced apoptosis in PC12 cells and suggested that interruption of cell cycling due to a decrease in membrane phosphatidylcholine concentration was the critical mechanism. We now examine whether choline deprivation induces apoptosis in nondividing primary neuronal cultures of fetal rat cortex and hippocampus. Choline deficiency induced widespread apoptosis in primary neuronal cells, indicating that cells do not have to be dividing to be sensitive to choline deficiency. When switched to a choline-deficient medium, both types of cells became depleted of choline, phosphocholine and phosphatidylcholine, and in primary neurons neurite outgrowth was dramatically attenuated. Primary cells could be rescued from apoptosis by treatment with phosphocholine or lysophosphatidylcholine. As described previously for PC12 cells, an increase in ceramide (Cer) was associated with choline deficiency-induced apoptosis in primary neurons. The primary neuronal culture appears to be an excellent model to explore the mechanism whereby maternal dietary choline intake modulates apoptosis in the fetal brain.  (+info)

Opposing regulation of choline deficiency-induced apoptosis by p53 and nuclear factor kappaB. (13/288)

We have previously shown that fetal rat brain cells, preneuronal (PC12), and hepatocyte (CWSV-1) cells undergo apoptosis during choline deficiency (CD). The PC12 and epithelial cell culture models were used to determine the molecular mechanism by which CD induces apoptosis. Our data indicate that CD leads to both growth arrest and apoptosis in a subpopulation of cells, which correlate with the up-regulation of the tumor suppressor protein p53 and concurrent up-regulation of the cyclin-dependent kinase-inhibitor p21(WAF1/CIP1). Additionally, CD induced both a G1/S and a G2/M arrest. Transient transfection of a dominant negative p53 (p53DN) construct into PC12 cells, which inhibited endogenous p53 activation, significantly reduced the induction of apoptosis associated with CD. Interestingly, CD also induced the persistent activation of the transcription factor NF-kappaB. Activation of NF-kappaB has been shown to promote cell survival and proposed to antagonize p53. Consistent with this, expression of a super-repressor form of IkappaBalpha (SR-IkappaBalpha) that functions to strongly inhibit NF-kappaB activation, profoundly enhanced cell death during CD. In summary, these results suggest that the effects of CD on apoptosis and subsequent cell survival are mediated through two different signaling pathways, p53 and NF-kappaB, respectively. Taken together, our data demonstrates the induction of opposing mechanisms associated with nutrient deficiency that may provide a molecular mechanism by which CD promotes carcinogenesis.  (+info)

Application of the PKCYP-test in cases of altered CYP1A2 for multiple CYP systems in rat models of disease. (14/288)

Previously, we established a method to assess drug metabolism capacity based on a pharmacokinetic estimation of the quantity of cytochrome P450 (CYP) in vivo (PKCYP-test) by introducing an apparent liver-to-blood free concentration gradient in vivo (qg). The qg values were determined as the ratio of in vivo-in vitro clearance. In this study, we examined the application of the PKCYP-test to the clearance of acetanilide and caffeine mediated by CYP1A2 using rat models in which the levels of CYP enzymes were reduced. Rats fed a choline-deficient diet (CD-fed) and aged rats were used as models for a low level of CYP in the liver. In both rat models, the contribution (fCYP) of CYP1A2 to the in vivo intrinsic clearance values (CLint) of acetanilide and caffeine metabolism was less than unity, suggesting that other metabolic pathways are involved in the CLint. The in vivo clearance for CYP1A2 was estimated by multiplying fCYP by CLint, then the value of qg was determined as the ratio of in vivo-in vitro clearance. We predicted the level of CYP1A2 in CD-fed and aged rats, based on the clearance of acetanilide mediated by CYP1A2, using the qg value of control rats. The clearance of caffeine mediated by CYP1A2 in CD-fed and aged rats, as estimated from the predicted level of CYP1A2, correlated with the observed values. In conclusion, we have demonstrated that the PKCYP-test can be applied to CYP1A2 for drugs metabolized by multiple CYP isozymes, and/or to models involving reduced CYP.  (+info)

Studies of methionine cycle intermediates (SAM, SAH), DNA methylation and the impact of folate deficiency on tumor numbers in Min mice. (15/288)

Several epidemiological studies have suggested a modulatory effect of dietary folate intake on the risk of colorectal cancer. The molecular basis for this inverse association is not clearly understood, but may involve alterations in DNA methylation. In this study, we examined the levels of methylation intermediates [S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH)] and of global DNA methylation in the pre-neoplastic small intestine of Min (multiple intestinal neoplasia) mice. We also studied the effect of folate/choline deficiency on these parameters and on tumor multiplicity in this animal model. In folate-adequate Min mice, we identified positive linear correlations between SAM or SAH and tumor numbers (R(2) = 0.38, P < 0.005; R(2) = 0.26, P = 0.025, respectively). A positive correlation between global DNA hypomethylation and tumor multiplicity was also observed (R(2) = 0.29, P = 0.014). These three biochemical determinants (SAM, SAH and DNA hypomethylation) may, therefore, serve as early markers of cell transformation. Folate/choline deficiency, however, did not produce a consistent effect on tumor numbers in three separate experiments. As an increase in tumor numbers was observed only in folate- and choline-deficient mice with low levels of SAM and DNA hypomethylation, the modulatory role of folate may be dependent on the transformation state of the cell.  (+info)

Choline deficiency-induced liver damage is reversible in Pemt(-/-) mice. (16/288)

Hepatic tissue has two pathways for phosphatidylcholine (PC) synthesis, i.e., the cytidinediphosphocholine (CDP-choline) pathway and the methylation pathway, which utilizes phosphatidylethanolamine-N-methyltransferase (PEMT). Fatal liver damage occurs in Pemt(-/-)mice fed a choline-deficient (CD) diet. We investigated whether liver damage can be reversed by the addition of dietary choline. Mice (8 wk old) were fed the CD purified diet for 4 d, a choline-supplemented (CS) diet (CD diet + 0.4% choline chloride) for 4 d, or the CD diet for 3 d and a CS diet for 1 d (CD/CS). Pemt(-/-)mice fed the CD diet for 3 d exhibited liver damage as assayed by plasma aminotransferase levels. The livers appeared normal after subsequent feeding of the CS diet for 1 d (CD/CS). The activities of plasma aminotransferases of CD/CS fed mice were comparable to Pemt(-/-)mice fed the CS diet. Hepatic PC and triacylglycerol levels as well as plasma PC levels in the CD/CS-fed Pemt(-/-)mice were lower than those of mice fed the CD diet and began to approach normal levels. Although the CD diet induces liver damage in Pemt(-/-)mice, this damage can be rapidly reversed by the addition of dietary choline.  (+info)