Walnut-enriched diet increases the association of LDL from hypercholesterolemic men with human HepG2 cells. (57/418)

In a randomized, cross-over feeding trial involving 10 men with polygenic hypercholesterolemia, a control, Mediterranean-type cholesterol-lowering diet, and a diet of similar composition in which walnuts replaced approximately 35% of energy from unsaturated fat, were given for 6 weeks each. Compared with the control diet, the walnut diet reduced serum total and LDL cholesterol by 4.2% (P = 0.176), and 6.0% (P = 0.087), respectively. No changes were observed in HDL cholesterol, triglycerides, and apolipoprotein A-I levels or in the relative proportion of protein, triglycerides, phospholipids, and cholesteryl esters in LDL particles. The apolipoprotein B level declined in parallel with LDL cholesterol (6.0% reduction). Whole LDL, particularly the triglyceride fraction, was enriched in polyunsaturated fatty acids from walnuts (linoleic and alpha-linolenic acids). In comparison with LDL obtained during the control diet, LDL obtained during the walnut diet showed a 50% increase in association rates to the LDL receptor in human hepatoma HepG2 cells. LDL uptake by HepG2 cells was correlated with alpha-linolenic acid content of the triglyceride plus cholesteryl ester fractions of LDL particles (r(2) = 0.42, P < 0.05). Changes in the quantity and quality of LDL lipid fatty acids after a walnut-enriched diet facilitate receptor-mediated LDL clearance and may contribute to the cholesterol-lowering effect of walnut consumption.  (+info)

Ezetimibe, a potent cholesterol absorption inhibitor, inhibits the development of atherosclerosis in ApoE knockout mice. (58/418)

Ezetimibe (SCH58235) is a potent, selective, cholesterol absorption inhibitor. The objective of this study was to determine whether ezetimibe reduces plasma cholesterol and inhibits atherogenesis in apolipoprotein E knockout (apoE-/-) mice. Cholesterol absorption was inhibited by >90% at doses of ezetimibe >3 mg/kg in apoE-/- mice. Atherosclerosis and lipoprotein changes were determined in apoE-/- mice fed a high-fat (0.15% cholesterol) "western" diet, a low-fat (0.15% cholesterol) diet, or a semisynthetic cholesterol-free diet with or without ezetimibe (5 mg/kg per day) for 6 months. Ezetimibe reduced plasma cholesterol levels from 964 to 374 mg/dL, from 726 to 231 mg/dL, and from 516 to 178 mg/dL in the western, low-fat, and cholesterol-free diet groups, respectively. The reductions occurred in the very low density and low density lipoprotein fractions, whereas high density lipoprotein cholesterol levels were increased by ezetimibe treatment. Ezetimibe reduced aortic atherosclerotic lesion surface area from 20.2% to 4.1% in the western diet group and from 24.1% to 7.0% in the low-fat cholesterol diet group. Ezetimibe reduced carotid artery atherosclerotic lesion cross-sectional area by 97% in the western and low-fat cholesterol groups and by 91% in the cholesterol-free group. Ezetimibe inhibits cholesterol absorption, reduces plasma cholesterol, increases high density lipoprotein levels, and inhibits the progression of atherosclerosis under western, low-fat, and cholesterol-free dietary conditions in apoE-/- mice. Although apoE-/- mice are more hypercholesterolemic than are humans and low density lipoprotein reductions with ezetimibe are not as pronounced clinically, ezetimibe may inhibit atherogenesis in individuals consuming restricted-fat or western diets.  (+info)

Lipoprotein particle abnormalities and the impaired lipolysis in renal insufficiency. (59/418)

BACKGROUND: Increased concentrations of very low- (VLDL) and intermediate-density (IDL) lipoproteins in chronic renal failure (CRF) are thought to result from a defect(s) in degradation of plasma triglyceride (TG)-rich lipoproteins. The purpose of this study was to identify lipoprotein abnormalities associated with the reduced lipolytic rate constant, k1, of combined VLDL and IDL substrate from renal patients and asymptomatic controls. METHODS: The VLDL + IDL were isolated from 18 predialytic patients (CRF-I), 8 patients on hemodialysis (CRF-II) and 10 asymptomatic controls. The lipolytic rate constant (k1) of VLDL + IDL was measured by an assay using bovine milk lipoprotein lipase and determination of TG before and after incubation by gas chromatography (GC). Neutral lipids were measured by GC and apolipoproteins by electroimmunoassays; the apolipoprotein-defined TG-rich lipoproteins including Lp-B:C, Lp-B:C:E and Lp-A-II:B:C:D:E were determined by immunoaffinity chromatography. RESULTS: The k1 values of VLDL + IDL were significantly (P < 0.001) lower in CRF-I and CRF-II patients (0.0341 and 0.0352 min-1, respectively) than controls (0.0515 min-1). The levels of apolipoproteins B, C-III and E, and TG-rich Lp-B:C, Lp-B:C:E and Lp-A-II:B:C:D:E particles normalized to 100 mg TG per VLDL + IDL were significantly higher in both groups of CRF patients than in controls. All three TG-rich lipoproteins were characterized by significantly increased percent contents of free (FC) and esterified (CE) cholesterol and a decreased percentage of TG. The k1 values of the combined CRF-I and CRF-II patient groups showed significant negative correlations (P < 0.001) with FC (r=-0.81) and CE (r=-0.63) and a positive correlation with TG (r=0.72). Among lipoprotein particles, only Lp-A-II:B:C:D:E levels showed a significant negative correlation with k1 values (r=-0.47, P < 0.03). CONCLUSIONS: This study shows that the abnormal neutral lipid composition of all three TG-rich lipoprotein particles and increased concentrations of Lp-A-II:B:C:D:E particles represent the main factors affecting the in vitro lipolytic rates of VLDL + IDL substrate in both the CRF patients before dialysis and patients on hemodialysis.  (+info)

Carbamazepine increases atherogenic lipoproteins: mechanism of action in male adults. (60/418)

Treatment with carbamazepine (CBZ) affects cholesterol concentrations, but little is known about the precise nature and underlying mechanisms of changes in lipoprotein metabolism. We investigated prospectively the effects of CBZ on lipid metabolism in normolipemic adults. In 21 healthy males, lipoprotein and noncholesterol sterol concentrations were measured before and during treatment with CBZ for 70 +/- 18 days. Thirteen subjects underwent kinetic studies of apolipoprotein-B (ApoB) metabolism with the use of endogenous stable isotope labeling. Lipoprotein kinetic parameters were calculated by multicompartmental modeling. Significant increases in total cholesterol, in ApoB-containing lipoproteins [very-low-density lipoprotein (VLDL), intermediate density lipoprotein (IDL), and low-density lipoprotein (LDL)], and in triglycerides, but not in high-density lipoprotein (HDL), were observed. Lipoprotein particle composition remained unchanged. Mean fractional catabolic and production rates of ApoB-containing lipoproteins were not significantly different, although mean production rates of VLDL and IDL were substantially increased (+46 +/- 139% and +30 +/- 97%, respectively), whereas mean production of LDL remained unchanged (+2.1 +/- 45.6%). Cholestanol in serum increased significantly but not the concentrations of plant sterols (campesterol, sitosterol) and the cholesterol precursors (lathosterol, mevalonic acid). There was a significant correlation between the decrease in free thyroxine and the increase in IDL cholesterol. Treatment with CBZ increases mainly ApoB-containing lipoproteins. CBZ seems not to influence endogenous cholesterol synthesis or intestinal absorption directly. The increase is neither related to increased ApoB production nor to decreased catabolism but is rather due to changes in the conversion cascade of IDL particles, most likely as an indirect effect through a decrease in thyroid hormones.  (+info)

Opposite metabolic response to fenofibrate treatment in pregnant and virgin rats. (61/418)

The level of maternal circulating triglycerides during late pregnancy has been correlated to newborns' weight in humans. To investigate the response to fenofibrate, a hypotriglyceridemic agent, in pregnant rats, 0, 100, or 200 mg of fenofibrate/kg body weight as oral doses were given twice a day from day 16 of gestation and studied at day 20. Virgin rats were studied in parallel. Liver weight was higher in pregnant than in virgin rats, and either dose of fenofibrate increased this variable in both groups. The highest dose of fenofibrate decreased fetal weight. Although plasma triglycerides decreased during the first 2 days of fenofibrate treatment in pregnant rats, the effect disappeared on day 3, and plasma triglycerides were even enhanced at day 4. In virgin rats, fenofibrate decreased plasma triglycerides throughout the experiment. Plasma cholesterol levels in pregnant rats decreased during the first 3 days of treatment, and the effect disappeared on day 4, whereas in virgin rats, values remained decreased. Changes in plasma triglycerides paralleled those of VLDL triglycerides. In pregnant rats, VLDL cholesterol levels increased while LDL cholesterol decreased with the treatment, whereas in virgin rats, cholesterol levels decreased in all lipoprotein fractions. Only in virgin rats did liver triglyceride concentration increase with fenofibrate treatment. Lumbar adipose tissue LPL was lower in pregnant than in virgin rats, and fenofibrate treatment decreased this variable in both groups. Maternal fenofibrate treatment increased fetal plasma and liver triglyceride and cholesterol concentrations. It is proposed that the opposite effects of fenofibrate treatment in virgin and pregnant rats are a consequence of both the enhanced liver capability for VLDL triglyceride production and a rebound response to the drug in the latter.  (+info)

Diet-induced obesity and hepatic gene expression alterations in C57BL/6J and ICAM-1-deficient mice. (62/418)

The effects of high-fat feeding on the development of obesity were evaluated in intercellular adhesion molecule-1 (ICAM-1) knockout and C57BL/6J (B6) male mice fed a high-fat diet for < or =50 days. Serum and tissues were collected at baseline and after 1, 11, and 50 days on the diet. After 11 days on the diet, ICAM-1-deficient, but not B6, mice developed fatty livers and showed a significant increase in inguinal fat pad weight. At day 50, ICAM-1-deficient mice weighed less, and their adiposity index and circulating leptin levels were significantly lower than those of B6 controls. To better understand the early differential response to the diet, liver gene expression was analyzed at three time points by use of Affymetrix GeneChips. In both strains, a similar pattern of gene expression was detected in response to the high-fat diet. However, sterol regulatory element-binding protein-1, apolipoprotein A4, and adipsin mRNAs were significantly induced in ICAM-1-deficient livers, suggesting that these genes and their associated pathways may be involved in the acute diet response observed in the knockout mice.  (+info)

A rapid single-step centrifugation method for determination of HDL, LDL, and VLDL cholesterol, and TG, and identification of predominant LDL subclass. (63/418)

Determination of the circulating levels of plasma lipoproteins HDL, LDL, and VLDL is critical in the assessment of risk of coronary heart disease. More recently it has become apparent that the LDL subclass pattern is a further important diagnostic parameter. The reference method for separation of plasma lipoproteins is ultracentrifugation. However, current methods often involve prolonged centrifugation steps and use high salt concentrations, which can modify the lipoprotein structure and must be removed before further analysis. To overcome these problems we have now investigated the use of rapid self-generating gradients of iodixanol for separation and analysis of plasma lipoproteins. A protocol is presented in which HDL, LDL, and VLDL, characterized by electron microscopy and agarose gel electophoresis, separate in three bands in a 2.5 h centrifugation step. Recoveries of cholesterol and TG from the gradients were close to 100%. The distribution profiles of cholesterol and TG in the gradient were used to calculate the concentrations of individual lipoprotein classes. The values correlated with those obtained using commercial kits for HDL and LDL cholesterol. The position of the LDL peak in the gradient and its shape varied between plasma samples and was indicative of the density of the predominant LDL class. The novel protocol offers a rapid, reproducible and accurate single-step centrifugation method for the determination of HDL, LDL, and VLDL cholesterol, and TG, and identification of LDL subclass pattern.  (+info)

Proteinuria is preceded by decreased nitric oxide synthesis and prevented by a NO donor in cholesterol-fed rats. (64/418)

BACKGROUND: Hypercholesterolemia decreases nitric oxide (NO) availability in the circulation and induces podocyte activation and renal injury in rats. It is unknown whether hypercholesterolemia decreases renal NO availability. To dissociate the injury-independent effect of hypercholesterolemia on renal NO availability from secondary effects of proteinuria, increasing concentrations of cholesterol were administered. To determine whether podocyte activation and renal injury were associated with NO deficiency, molsidomine, an exogenous NO donor, was administered to hypercholesterolemic rats. METHODS: Female rats were fed 0, 0.5, 1, or 2% cholesterol for 24 weeks. Rats fed 2% cholesterol were also studied for two weeks. In addition rats fed 0 or 1% cholesterol received 120 mg molsidomine/L drinking water. Renal NO availability was determined by measuring renal NO synthesis and superoxide activity. Podocyte activation was monitored by desmin staining. RESULTS: Hypercholesterolemia dose-dependently increased proteinuria. In the absence of proteinuria, hypercholesterolemia decreased renal NO synthesis (4.2 +/- 0.5 in 0.5% cholesterol vs. 6.8 +/- 0.6 pmol/min/mg protein in controls; P < 0.05). With the exception of neuronal nitric oxide synthase (nNOS), renal NOS protein mass remained unaffected. Renal superoxide activity was dose-dependently increased, thus further lowering renal NO availability. Podocyte injury was dose-dependently increased even in the absence of proteinuria (score, 40 +/- 4 in 0.5% cholesterol vs. 9 +/- 4 in controls; P < 0.05). After two weeks, hypercholesterolemia caused no proteinuria, but did cause some podocyte injury. Renal NOS activity was decreased, but glomerular endothelial NOS (eNOS) staining was unchanged. Molsidomine prevented proteinuria, podocyte activation, and all further renal injury. CONCLUSIONS: Hypercholesterolemia decreases renal NO synthesis, and induces podocyte activation before proteinuria appears. Renal superoxide activity is increased once rats are proteinuric, further lowering renal NO availability. All of these changes can be prevented by a NO donor.  (+info)