Expression of lysosomal acid lipase mutants detected in three patients with cholesteryl ester storage disease. (17/20)

Lysosomal acid lipase (LAL) gene mutations were identified in three patients with cholesteryl ester storage disease (CESD). Direct sequencing of genomic DNA revealed that: patient 1 was a compound heterozygote for a P181L mutation and an A to G3' splice site substitution that causes skipping of exon 7, with a loss of 49 amino acids from LAL (delta 205-253); patient 2 was a compound heterozygote for a G66V mutation and a 5' splice site mutation (G to A) that leads to skipping of exon 8 (delta 254-277); and patient 3 was a compound heterozygote for a L273S mutation and an unidentified null allele. Furthermore, patients 2 and 3 showed a novel G-2A polymorphism that could be detected by an Xbal restriction fragment length polymorphism. All these mutants and a previously reported H274Y allele were expressed in vitro in HeLa cells using the vaccinia T7 expression system. The resulting recombinant proteins were inactive towards cholesteryl oleate and trioleylglycerol, demonstrating the direct involvement of these mutations in the pathogenesis of CESD. Immunoblotting of normal LAL expressed in HeLa cells revealed four major molecular forms, at least two of high molecular mass (54 and 50-51 kDa) and two of low molecular mass (42 and 43 kDa). L273S and P181L substitutions and delta 254-277 were shown to result in altered LAL molecular forms, some of which suggest that post-translational processing may interfere with the catalytic activity of LAL.  (+info)

New lysosomal acid lipase gene mutants explain the phenotype of Wolman disease and cholesteryl ester storage disease. (18/20)

Deficiency of lysosomal acid lipase (LAL) leads to either Wolman disease (WD) or the more benign cholesteryl ester storage disease (CESD). To identify the molecular basis of the different phenotypes we have characterised the LAL gene mutations in three new patients with LAL deficiency. A patient with WD was homozygote for a null allele Y303X. The other two patients, with CESD, presented either homozygosity for T267I or compound heterozygosity consisting of Q64R and an exon 8 donor splice site substitution (G-->A in position -1). The mutants T267I and Q64R and the previously reported L273S, G66V, and H274Y CESD substitutions, overexpressed in stable clones, were found to be fully glycosylated and show an enzymatic activity of 3-8% of that of normal LAL. On the other hand, the delta254-277 mutant protein derived from exon 8 skipping and the Y303X protein were totally inactive. By transient transfection of hybrid minigene constructs, the CESD G-->A (-1) substitution resulted in partial exon inclusion, thus allowing the production of a small amount of normal LAL mRNA and hence of a functional enzyme. In contrast, a G-->A substitution observed in WD at position + 1 of the same exon 8 donor site resulted in complete exon skipping and the sole production of an inactive delta254-277 protein. In conclusion, LAL genotypes determine the level of residual enzymatic activity, thus explaining the severity of the phenotype.  (+info)

Targeted disruption of the mouse lysosomal acid lipase gene: long-term survival with massive cholesteryl ester and triglyceride storage. (19/20)

Lysosomal acid lipase (LAL) is essential for the hydrolysis of the triglycerides and cholesteryl esters in lysosomes. Its deficiency produces two phenotypes, a severe infantile-onset variant, Wolman disease (WD), and a later onset variant, cholesteryl ester storage disease (CESD). A mouse model with a LAL null mutation was produced by targeting disruption of the mouse gene. Homozygote knockout mice (lal -/lal-) produce no LAL mRNA, protein or enzyme activity. The lal-/lal- mice are born in Mendelian ratios, are normal appearing at birth, and follow normal development into adulthood. However, massive accumulation of triglycerides and cholesteryl esters occurs in several organs. By 21 days, the liver develops a yellow-orange color and is approximately 1.5-2.0x larger than normal. The accumulated cholesteryl esters and triglycerides are approximately 30-fold greater than normal. The lal+/lal- mice have approximately 50% of normal LAL activity and do not show lipid accumulation. Male and female lal-/lal- mice are fertile and can be bred to produce progeny. This mouse model is a phenotypic model of human CESD, and a biochemical and histopathologic mimic of human WD. The lal-/lal- mice provide a model to determine the role of LAL in lipid metabolism and the pathogenesis of its deficiency states.  (+info)

Molecular defects underlying Wolman disease appear to be more heterogeneous than those resulting in cholesteryl ester storage disease. (20/20)

Human lysosomal acid lipase/cholesteryl ester hydrolase (hLAL) is essential for the intralysosomal metabolism of cholesteryl esters and triglycerides taken up by receptor-mediated endocytosis of lipoprotein particles. The key role of the enzyme in intracellular lipid homeostasis is illustrated by two lysosomal storage diseases inherited as autosomal recessive traits. Wolman disease, associated with deficient hLAL activity, leads to massive intracellular substrate accumulation and is always fatal in early infancy. Cholesteryl ester storage disease (CESD), in contrast, is characterized by very low levels of enzymic activity sufficient to allow survival of the affected patients into adulthood. In order to elucidate the underlying molecular defects in Wolman disease, we have characterized the hLAL gene in two female Wolman patients of German and Turkish origin by SSCP and DNA sequence analysis. Our results demonstrate that the German proband was compound heterozygous for an 8-bp deletion in exon 3 and a 2-bp deletion in exon 4 of the hLAL gene. These frameshift mutations lead to protein truncation at amino acid positions 24 and 116 and to complete loss of hydrolytic activity. The Turkish proband, in contrast, was homozygous for a G(1064)-->T substitution in exon 10 of the hLAL gene which converts the completely conserved glycine (GGG) residue at position 321 of the mature enzyme to tryptophan (TGG). In vitro expression of the hLAL(Gly(321)-->Trp) cDNA construct revealed that the amino acid replacement results in a more than 99% reduction of neutral lipid hydrolysis. The mutations provide new insights into the molecular basis of Wolman disease which is apparently more heterogeneous at the genetic level than cholesteryl ester storage disease.-Lohse, P., S. Maas, P. Lohse, A. C. Sewell, O. P. van Diggelen, and D. Seidel. Molecular defects underlying Wolman disease appear to be more heterogeneous than those resulting in cholesteryl ester storage disease.  (+info)