Biliary lipids, cholesterol and bile synthesis: different adaptive mechanisms to dietary cholesterol in lean and obese subjects. (25/119)

BACKGROUND: Increased biliary cholesterol secretion together with elevated cholesterol synthesis may predispose obese subjects to cholesterol gallstone formation. AIM: To investigate whether processing of dietary cholesterol is altered in obesity, we enrolled eight lean and seven obese subjects in a double-blind crossover study. METHODS: Cholesterol consumption was 300 mg/day on low and 1300 mg/day on high cholesterol diet. After 3 weeks on either diet, hepatic bile was collected to determine biliary lipid secretion, and bile salt composition by high-performance liquid chromatography and cholesterol saturation index was calculated. Cholesterol synthesis was measured employing mass isotopomer distribution analysis. Bile acid synthesis via neutral and acidic pathway was assessed by serum levels of 7alpha-hydroxy-4-cholesten-3-one and 27-hydroxycholesterol. RESULTS: Cholesterol synthesis was increased in obese compared with lean and feedback inhibited only in obese. On low cholesterol diet, cholesterol secretion was doubled in obese but bile acid composition and synthesis was similar between the two groups. After high cholesterol diet, cholesterol saturation index and bile secretion were unchanged. In contrast to obese, lean increased bile acid synthesis only via the acidic pathway. CONCLUSIONS: Dietary cholesterol appears to preferentially induce bile acid synthesis via the acidic pathway in lean, whereas cholesterol synthesis was inhibited in obese. Thus, stable cholesterol saturation index may be achieved by different mechanisms.  (+info)

Biomarker evidence for a major preservation pathway of sedimentary organic carbon. (26/119)

Hydrogenation processes leading from biomolecules to fossil biomarkers in anoxic sediments are crucial for the preservation of organic matter. However, these processes are still poorly understood. The present identification of several reduced carotenoids in recent sediments attests that these processes operate at the earliest stages of diagenesis without structural or stereochemical specificity, implying a nonbiological reduction pathway. Sulfur species (e.g., H2S) are the hydrogen donors involved in such reduction, as demonstrated with laboratory experiments. These reactions allow the preservation of abundant organic carbon in the rock record.  (+info)

Dietary 5-campestenone (campest-5-en-3-one) enhances fatty acid oxidation in perfused rat liver. (27/119)

The effect of dietary 5-campestenone (campest-5-en-3-one), a chemical modification product of a naturally-occurring plant sterol, campesterol, on lipid metabolism was examined using a rat liver perfusion system. Male Sprague-Dawley rats weighing about 140 g were fed a diet supplemented with or without 0.2% 5-campestenone for 14 d. 5-Campestenone feeding resulted in a marked reduction in the concentrations of serum lipids, such as triacylglycerol (TG), cholesterol, phospholipid, and free fatty acid, without influencing food intake or growth. Then, isolated livers from both groups were perfused for 4 h in the presence of an exogenous linoelaidic acid substrate. Dietary 5-campestenone markedly elevated hepatic ketone body production, while cumulative secretions of TG, cholesterol, and phospholipid by the livers of rats fed 5-campestenone were all significantly lowered as compared to those fed without the compound: the extent of the reduction was more prominent in the secretion of TG than other lipid components. In addition, the reduction of TG secretion was concomitantly accompanied by the reduced incorporation of both exogenous and endogenous fatty acids into this lipid molecule. These results suggest that dietary 5-campestenone exerts its hypotriglyceridemic effect, at least, in part through an enhanced metabolism of endogenous and exogenous fatty acids to oxidation at the expense of esterification in rat liver.  (+info)

Highly sensitive quantification of 7alpha-hydroxy-4-cholesten-3-one in human serum by LC-ESI-MS/MS. (28/119)

We describe a highly sensitive and specific method for the quantification of serum 7alpha-hydroxy-4-cholesten-3-one (C4), which has been used as a biomarker for bile acid biosynthesis. This method is based upon a stable isotope dilution technique by liquid chromatography-tandem mass spectrometry (LC-MS/MS). C4 was extracted from human serum (2-50 mul) by a salting-out procedure, derivatized into the picolinoyl ester (C4-7alpha-picolinate), and then purified using a disposable C(18) cartridge. The resulting picolinoyl ester derivative of C4 was quantified by LC-MS/MS using the electrospray ionization mode. The detection limit of the C4 picolinoyl ester was found to be 100 fg (signal-to-noise ratio = 10), which was approximately 1,000 times more sensitive than the detection limit of C4 with a conventional HPLC-ultraviolet method. The relative standard deviations between sample preparations and between measurements by our method were calculated to be 5.7% and 3.9%, respectively, by one-way layout analysis. The recovery experiments were performed using serum spiked with 20.0-60.0 ng/ml C4 and were validated by a polynomial equation. The results showed that the estimated concentration with 95% confidence limit was 23.1 +/- 2.8 ng/ml, which coincided completely with the observed X(0) +/- SD = 23.3 +/- 1.0 ng/ml with a mean recovery of 93.4%. This method provides highly reliable and reproducible results for the quantification of C4, especially in small volumes of blood samples.  (+info)

Novel route for elimination of brain oxysterols across the blood-brain barrier: conversion into 7alpha-hydroxy-3-oxo-4-cholestenoic acid. (29/119)

Recently, we demonstrated a net blood-to-brain passage of the oxysterol 27-hydroxycholesterol corresponding to 4-5 mg/day. As the steady-state levels of this sterol are only 1-2 mug/g brain tissue, we hypothesized that it is metabolized and subsequently eliminated from the brain. To explore this concept, we first measured the capacity of in vitro systems representing the major cell populations found in the brain to metabolize 27-hydroxycholesterol. We show here that 27-hydroxycholesterol is metabolized into the known C(27) steroidal acid 7alpha-hydroxy-3-oxo-4-cholestenoic acid by neuronal cell models only. Using an in vitro model of the blood-brain barrier, we demonstrate that 7alpha-hydroxy-3-oxo-4-cholestenoic acid is efficiently transferred across monolayers of primary brain microvascular endothelial cells. Finally, we measured the concentration of 7alpha-hydroxy-3-oxo-4-cholestenoic acid in plasma from the internal jugular vein and brachial artery of healthy volunteers. Calculation of the arteriovenous concentration difference revealed a significant in vivo flux of this steroid from the brain into the circulation in human. Together, these studies identify a novel metabolic route for the elimination of 27-hydroxylated sterols from the brain. Given the emerging connections between cholesterol and neurodegeneration, this pathway may be of importance for the development of these conditions.  (+info)

Low density lipoprotein modification by cholesterol oxidase induces enhanced uptake and cholesterol accumulation in cells. (30/119)

Oxidation of low density lipoprotein (LDL) by cells of the arterial wall or in the presence of copper ions was shown to result in the peroxidation of its fatty acids as well as its cholesterol moiety. LDL incubation with cholesterol oxidase (CO) resulted in the conversion of up to 85% of the lipoprotein unesterified cholesterol (cholest-5-en-3-ol) to cholestenone (cholest-4-en-3-one) in a dose- and time-dependent pattern. Plasma very low density lipoprotein (VLDL) and high density lipoprotein (HDL) could be similarly modified by CO. In cholesterol oxidase-modified LDL (CO-LDL), unlike copper ion-induced oxidized LDL (Cu-Ox-LDL), there was no fatty acids peroxidation, and lipoprotein size or charge as well as LDL cholesteryl ester, phospholipids, and triglycerides content were not affected. CO-LDL, however, demonstrated enhanced susceptibility to oxidation by copper ions in comparison to native LDL. Upon incubation of CO-LDL with J-774 A.1 macrophage-like cell line, cellular uptake and degradation of the lipoprotein was increased by up to 62% in comparison to native LDL but was 15% lower than that of Cu-Ox-LDL. Similarly, the binding of CO-LDL to macrophages increased by up to 80%, and cellular cholesterol mass was increased 51% more than the mass obtained with native LDL. Several lines of evidence indicate that CO-LDL was taken up via the LDL receptor: 1) Excess amounts of unlabeled LDL, but not acetyl-LDL (Ac-LDL), effectively competed with 125I-CO-LDL for the uptake by cells. 2) The degradation of CO-LDL by various types of macrophages and by fibroblasts could be dissociated from that of Ac-LDL and was always higher than that of native LDL. 3) A monoclonal antibody to the LDL receptor (IgG-C7) and a monoclonal antibody to the LDL receptor binding domains on apoB-100 (B1B6) inhibited macrophage degradation of CO-LDL. The receptor for Cu-Ox-LDL, which is not shared with Ac-LDL, was also partially involved in macrophage uptake of CO-LDL, since Cu-Ox-LDL demonstrated some competition capability with CO-125I-LDL for its cellular degradation. CO-LDL cellular degradation was inhibited by chloroquine, thus implying lysosomal involvement in the cellular processing of the lipoprotein. Incubation of macrophages with LDL in the presence of increasing concentrations of cholestenone resulted in up to 52% enhanced lipoprotein cellular degradation suggesting that the cholestenone in CO-LDL might be involved in the enhanced cellular uptake of the modified lipoprotein.(ABSTRACT TRUNCATED AT 400 WORDS)  (+info)

Cholesterol is converted to 7 alpha-hydroxy-3-oxo-4-cholestenoic acid in liver mitochondria. Evidence for a mitochondrial sterol 7 alpha-hydroxylase. (31/119)

The metabolism of cholesterol in isolated intact pig liver mitochondria has been investigated. Six major cholesterol metabolites were identified by gas-liquid chromatography-mass spectrometry, the metabolic end product being 7 alpha-hydroxy-3-oxo-4-cholestenoic acid. Incubations with the synthesized intermediates suggested that the major pathway from cholesterol to this acid proceeds via the sequence of 26-hydroxylation, 7 alpha-hydroxylation, further oxidation of the side chain and oxidation/isomerization in the A-ring. The observed reactions prove that in addition to a sterol 26-hydroxylase, pig liver mitochondria contain significant amounts of a 7 alpha-hydroxylase active on side chain oxygenated 3 beta-hydroxy-delta 5-C27 steroids, an oxidoreductase active in the side chain of 26-hydroxylated steroids and a 3 beta-hydroxy-delta 5 steroid oxidoreductase active on 7 alpha-hydroxylated C27 steroids. Since 7 alpha-hydroxy-3-oxo-4-cholestenoic acid is believed to be an important precursor of chenodeoxycholic acid, this study shows that the first reactions in the biosynthesis of bile acids can be exclusively mitochondrial and thereby bypass microsomal cholesterol 7 alpha-hydroxylase as the rate-limiting enzyme.  (+info)

Identification and characterization of cholest-4-en-3-one, oxime (TRO19622), a novel drug candidate for amyotrophic lateral sclerosis. (32/119)

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by progressive death of cortical and spinal motor neurons, for which there is no effective treatment. Using a cell-based assay for compounds capable of preventing motor neuron cell death in vitro, a collection of approximately 40,000 low-molecular-weight compounds was screened to identify potential small-molecule therapeutics. We report the identification of cholest-4-en-3-one, oxime (TRO19622) as a potential drug candidate for the treatment of ALS. In vitro, TRO19622 promoted motor neuron survival in the absence of trophic support in a dose-dependent manner. In vivo, TRO19622 rescued motor neurons from axotomy-induced cell death in neonatal rats and promoted nerve regeneration following sciatic nerve crush in mice. In SOD1(G93A) transgenic mice, a model of familial ALS, TRO19622 treatment improved motor performance, delayed the onset of the clinical disease, and extended survival. TRO19622 bound directly to two components of the mitochondrial permeability transition pore: the voltage-dependent anion channel and the translocator protein 18 kDa (or peripheral benzodiazepine receptor), suggesting a potential mechanism for its neuroprotective activity. TRO19622 may have therapeutic potential for ALS and other motor neuron and neurodegenerative diseases.  (+info)