Differences in hepatic levels of intermediates in bile acid biosynthesis between Cyp27(-/-) mice and CTX. (25/263)

Cerebrotendinous xanthomatosis (CTX) is a rare, recessively inherited lipid storage disease characterized by a markedly reduced production of chenodeoxycholic acid and an increased formation of 25-hydroxylated bile alcohols and cholestanol. Patients with this disease are known to have mutations in the sterol 27-hydroxylase (Cyp27) gene. However, one study showed that mice with a disrupted Cyp27 gene did not have any CTX-related clinical or biochemical abnormalities. To explore the reason, hepatic cholesterol, cholestanol, and 12 intermediates in bile acid biosynthetic pathways were quantified in 10 Cyp27(-/-) and 7 Cyp27(+/+) mice, two CTX patients (untreated and treated with chenodeoxycholic acid), and four human control subjects by high resolution gas chromatography-mass spectrometry. Mitochondrial 27-hydroxycholesterol and 5beta-cholestane-3alpha,7alpha,12alpha,27-tetrol were virtually absent in both Cyp27(-/-) mice and CTX patients. In Cyp27(-/-) mice, microsomal concentrations of intermediates in the early bile acid biosynthetic pathway (7alpha-hydroxycholesterol, 7alpha-hydroxy-4-cholesten-3-one, 7alpha,12alpha-dihydroxy-4-cholesten-3-one, and 5beta-cholestane-3alpha,7alpha,12alpha-triol), 25-hydroxylated bile alcohols (5beta-cholestane-3alpha,7alpha,12alpha,25-tetrol, 5beta-cholestane-3alpha,7alpha,12alpha,23R,25-pentol, and 5beta-cholestane-3alpha,7alpha,12alpha,24R, 25-pentol), and cholestanol were all significantly elevated compared with those in Cyp27(+/+) mice, although the levels were lower than those in untreated CTX patients. The intermediate levels in early bile acid biosynthesis were more elevated in male (16;-86% of CTX) than in female Cyp27(-/-) mice (7-30% of CTX). In contrast, 25-hydroxylated bile alcohol concentrations were not significantly different between male and female Cyp27(-/-) mice and were considerably lower (less than 14%) than those in CTX patients.These results suggest that 1) in Cyp27(-/-) mice, especially in females, classic bile acid biosynthesis via 7alpha-hydroxycholesterol is not stimulated as much as in CTX patients; and 2) formed 25-hydroxylated bile alcohols are more efficiently metabolized in Cyp27(-/-) mice than in CTX patients.  (+info)

Production of 25-hydroxycholesterol by testicular macrophages and its effects on Leydig cells. (26/263)

Testicular macrophages secrete 25-hydroxycholesterol, which can be converted to testosterone by neighboring Leydig cells. The purposes of the present studies were to determine the mode of production of this oxysterol and its long-term effects on Leydig cells. Because oxysterols are produced both enzymatically and by auto-oxidation, we first determined if testicular macrophages possess cholesterol 25-hydroxylase mRNA and/or if macrophage-secreted products oxidize cholesterol extracellularly. Rat testicular macrophages had 25-hydroxylase mRNA and converted 14C-cholesterol to 14C-25-hydroxycholesterol; however, radiolabeled cholesterol was not converted to 25-hydroxycholesterol when incubated with medium previously exposed to testicular macrophages. Exposure of Leydig cells to 10 microg/ml of 25-hydroxycholesterol, a dose within the range known to result in high basal production of testosterone when tested from 1 to 6 h, completely abolished LH responsiveness after 2 days of treatment. Because 25-hydroxycholesterol is toxic to many cell types at 1-5 microg/ml, we also studied its influence on Leydig cells during 4 days in culture using a wide range of doses. Leydig cells were highly resistant to the cytotoxic effects of 25-hydroxycholesterol, with no cells dying at 10 microg/ml and only 50% of cells affected at 100 microg/ml after 2 days of treatment. Similar conditions resulted in 100% death of a control lymphocyte cell line. These results demonstrate that 1) testicular macrophages have mRNA for cholesterol 25-hydroxylase and can convert cholesterol into 25-hydroxycholesterol, 2) macrophage-conditioned medium is not capable of auto-oxidation of cholesterol, 3) Leydig cells are highly resistant to the cytotoxic influences of 25-hydroxycholesterol, and 4) long-term treatment with high doses of 25-hydroxycholesterol results in loss of LH responsiveness. These results support the concept that testicular macrophages enzymatically produce 25-hydroxycholesterol that not only is metabolized to testosterone by Leydig cells when present at putative physiological levels but also may exert inhibitory influences on Leydig cells when present for extended periods at very high concentrations that may occur under pathological conditions.  (+info)

Oxysterols in the circulation of patients with the Smith-Lemli-Opitz syndrome: abnormal levels of 24S- and 27-hydroxycholesterol. (27/263)

Infants with the cholesterol synthesis defect Smith- Lemli-Opitz syndrome (SLO) have reduced activity of the enzyme 7-dehydrocholesterol-7-reductase and accumulate 7-dehydrocholesterol, with the highest concentration in the brain. As a result of the generally reduced content of cholesterol, plasma levels of oxysterols would be expected to be reduced. 24S-hydroxycholesterol is almost exclusively formed in the brain, whereas 27-hydroxycholesterol is mainly formed from extrahepatic and extracerebral cholesterol. In accordance with the expectations, sterol-correlated plasma levels of 24S-hydroxycholesterol were reduced in infants with SLO (by about 50%). In contrast, the sterol-correlated levels of 27-hydroxycholesterol in the circulation were markedly increased. No side-chain oxidized metabolites of 7-dehydrocholesterol were detected in the circulation. Recombinant human CYP27 had markedly lower 27-hydroxylase activity toward 7-dehydrocholesterol than towards cholesterol. HEK293 cells expressing 24S-hydroxylase active toward cholesterol had no significant activity towards 7-dehydrocholesterol. The plasma levels of 3 beta,7 alpha-dihydroxy-5-cholestenoic in the patients acid were reduced, suggesting a generally reduced metabolism of 27-oxygenated steroids. It is concluded that the accumulation of 7-dehydrocholesterol in the brains of patients with SLO reduces formation of 24S-hydroxycholesterol. The condition is associated with markedly increased circulating levels of 27-hydroxycholesterol, most probably due to reduced metabolism of this oxysterol. We discuss the possibility that the circulating levels of 24S-hydroxycholesterol may be used as a marker for the severity of the disease.--Bjorkhem, I., L. Starck, U. Andersson, D. Lutjohann, S. von Bahr, I. Pikuleva, A. Babiker, and U. Diczfaulsy. Oxysterols in the circulation of patients with the Smith-Lemli-Opitz syndrome: abnormal levels of 24S- and 27-hydroxycholesterol. J. Lipid Res. 2001. 42: 366--371.  (+info)

Physical interaction and functional synergy between glucocorticoid receptor and Ets2 proteins for transcription activation of the rat cytochrome P-450c27 promoter. (28/263)

We demonstrate that dexamethasone-mediated transcription activation of the cytochrome P-450c27 promoter involves a physical interaction and functional synergy between glucocorticoid receptor (GR) and Ets2 factor. Ets2 protein binding to a "weak" Ets-like site of the promoter is dependent on GR bound to the adjacent cryptic glucocorticoid response element. Coimmunoprecipitation and chemical cross-linking experiments show physical interaction between GR and Ets2 proteins. Mutational analyses show synergistic effects of Ets2 and GR in dexamethasone-mediated activation of the cytochrome P-450c27 promoter. The DNA-binding domain of GR, lacking the transcription activation and ligand-binding domains, was fully active in synergistic activation of the promoter with intact Ets2. The DNA-binding domain of Ets2 lacking the transcription activation domain showed a dominant negative effect on the transcription activity. Finally, a fusion protein consisting of the GR DNA-binding domain and the transcription activation domain of Ets2 fully supported the transcription activity, suggesting a novel synergy between the two proteins, which does not require the transactivation domain of GR. Our results also provide new insights on the role of putative weak consensus Ets sites in transcription activation, possibly through synergistic interaction with other gene-specific transcription activators.  (+info)

Hamsters predisposed to sucrose-induced cholesterol gallstones (LPN strain) are more resistant to excess dietary cholesterol than hamsters that are not sensitive to cholelithiasis induction. (29/263)

We compared the effects of cholesterol feeding in male hamsters from two strains with different propensities to sucrose-induced cholelithiasis; Laboratoire de Physiologie de la Nutrition (LPN) hamsters are predisposed to developing biliary cholesterol gallstones, whereas Janvier (JAN) hamsters are not. When fed a basal control diet, LPN hamsters had a lower cholesterolemia (-21%, P = 0.01) than JAN hamsters, and a higher activity of 3-hydroxy-3-methyl glutaryl coenzyme A reductase in liver (+148%, P = 0.018) and intestine (+281%, P < 0.0001). After feeding the same diet enriched with 0.3% cholesterol for 5 wk, cholesterolemia increased more dramatically in JAN hamsters (+235%, P < 0.001) than in LPN hamsters (+108%, P < 0.001), as did the liver concentration of cholesterol, which reached 152.30 +/- 13.00 and 44.41 +/- 9.06 micromol/g, respectively. Only JAN hamsters displayed hepatomegaly, with an increased cholesterol saturation index of the gallbladder bile (+100%, P < 0.01), due to the cholesterol challenge. In liver, cholesterol feeding reduced cholesterol 7alpha-hydroxylase activity and mRNA level, and stimulated sterol 27-hydroxylase and oxysterol 7alpha-hydroxylase activities. Hepatic levels of LDL receptor decreased by approximately 60% in both strains, whereas HDL receptor scavenger class B type 1 (SR-BI) levels were unaffected by dietary cholesterol. The greater resistance of LPN hamsters to the hypercholesterolemic diet can be explained by a lower capacity to store cholesterol in the liver and greater efficiency in reducing the activity of 3-hydroxy-3-methyl glutaryl coenzyme A reductase in response to cholesterol feeding [from 11263 to 261 pmol/(min x organ) in LPN hamsters and from 4530 to 694 pmol/(min x organ) in JAN hamsters]. These results highlight the usefulness of this two-strain model, which offers some analogy with the inverse association between the predisposition to cholelithiasis and the risk of atherosclerosis in humans.  (+info)

In vivo and in vitro regulation of sterol 27-hydroxylase in the liver during the acute phase response. potential role of hepatocyte nuclear factor-1. (30/263)

The host response to infection is associated with several alterations in lipid metabolism that promote lipoprotein production. These changes can be reproduced by lipopolysaccharide (LPS) administration. LPS stimulates hepatic cholesterol synthesis and suppresses the conversion of cholesterol to bile acids. LPS down-regulates hepatic cholesterol 7alpha-hydroxylase, the rate-limiting enzyme in the classic pathway of bile acid synthesis. We now demonstrate that LPS markedly decreases the activity of sterol 27-hydroxylase, the rate-limiting enzyme in the alternate pathway of bile acid synthesis, in the liver of Syrian hamsters. Moreover, LPS progressively decreases hepatic sterol 27-hydroxylase mRNA levels by 75% compared with controls over a 24-h treatment period. LPS also decreases oxysterol 7alpha-hydroxylase mRNA levels in mouse liver. In vitro studies in HepG2 cells demonstrate that tumor necrosis factor and interleukin (IL)-1 decrease sterol 27-hydroxylase mRNA levels by 48 and 80%, respectively, whereas IL-6 has no such effect. The IL-1-induced decrease in sterol 27-hydroxylase mRNA expression occurs early, is sustained for 48 h, and requires very low doses. In vivo IL-1 treatment also lowers hepatic sterol 27-hydroxylase mRNA levels in Syrian hamsters. Studies investigating the molecular mechanisms of LPS-induced decrease in sterol 27-hydroxylase show that LPS markedly decreases mRNA and protein levels of hepatocyte nuclear factor-1 (HNF-1), a transcription factor that regulates sterol 27-hydroxylase, in the liver. Moreover, LPS decreases the binding activity of HNF-1 by 70% in nuclear extracts in hamster liver, suggesting that LPS may down-regulate sterol 27-hydroxylase by decreasing the binding of HNF-1 to its promoter. Coupled with our earlier studies on cholesterol 7alpha-hydroxylase, these data indicate that LPS suppresses both the classic and alternate pathways of bile acid synthesis. A decrease in bile acid synthesis in liver would reduce cholesterol catabolism and thereby contribute to the increase in hepatic lipoprotein production that is induced by LPS and cytokines.  (+info)

Overexpression of CYP27 in hepatic and extrahepatic cells: role in the regulation of cholesterol homeostasis. (31/263)

In the liver, sterol 27-hydroxylase (CYP27) participates in the classic and alternative pathways of bile acid biosynthesis from cholesterol (Chol). In extrahepatic tissues, CYP27 converts intracellular Chol to 27-hydroxycholesterol (27OH-Chol), which may regulate the activity of 3-hydroxy-3-methylglutaryl CoA reductase (HMG-CoA-R). This study attempts to better define the role of CYP27 in the maintenance of Chol homeostasis in hepatic and extrahepatic cells by overexpressing CYP27 in Hep G2 cells and Chinese hamster ovary (CHO) cells through infection with a replication-defective recombinant adenovirus encoding for CMV-CYP27. After infection, CYP27 mRNA and protein levels increased dramatically. CYP27 specific activity also increased two- to fourfold in infected cells (P < or = 0.02), with a marked increase in conversion of [(14)C]Chol to [(14)C]27OH-Chol (approximately 150%; P < or = 0.01). Accumulation of 27OH-Chol in CHO cells was associated with a 50% decrease in HMG-CoA-R specific activity (P < or = 0.02). In infected Hep G2 cells, the significant increase in bile acid synthesis (46%; P < or = 0.006), which prevented the accumulation of intracellular 27OH-Chol, resulted in increased HMG-CoA-R activity (183%; P < or = 0.02). Overexpression of CYP27 in Hep G2 cells also increased acyl CoA-cholesterol acyltransferase (71%, P < or = 0.02) and decreased cholesteryl ester hydrolase (55%, P < or = 0.02). In conclusion, CYP27 generates different physiological responses depending on cell type and presence or absence of bile acid biosynthetic pathways.  (+info)

1,25-Dihydroxyvitamin D(3) downregulates the rat intestinal vitamin D(3)-25-hydroxylase CYP27A. (32/263)

The vitamin D(3)-25-hydroxylase CYP27A is located predominantly in liver, but its expression is also detected in extrahepatic tissues. Our aim was to evaluate the regulation of CYP27A by vitamin D(3) (D(3)) or its metabolites in rat duodena. Vitamin D-depleted rats were repleted with D(3), 25-hydroxyvitamin D (25OHD), or 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] or acutely injected 1,25(OH)(2)D(3) to investigate the mechanisms of action of the hormone. All D(3) compounds led to a progressive decrease in CYP27A mRNA, with levels after D(3) representing 20% of that observed in D depletion. 25OHD decreased CYP27A mRNA by 55%, whereas 1,25(OH)(2)D(3) led to a 40% decrease, which was accompanied by a 31% decrease in CYP27A protein levels and an 89% decrease in enzyme activity. Peak circulating 1,25(OH)(2)D(3) concentrations were, however, the highest in D(3)-repleted, followed by 25OHD- and 1,25(OH)(2)D(3)-repleted animals. 1,25(OH)(2)D(3) resulted in a decrease in both CYP27A mRNA half-life and transcription rate. Our data illustrate that the intestine expresses the D(3)-25-hydroxylase and that the gene is highly regulated in vivo through a direct action of 1,25(OH)(2)D(3) or through the local production of D(3) metabolites.  (+info)