Role of DnaK in in vitro and in vivo expression of virulence factors of Vibrio cholerae. (1/2652)

The dnaK gene of Vibrio cholerae was cloned, sequenced, and used to construct a dnaK insertion mutant which was then used to examine the role of DnaK in expression of the major virulence factors of this important human pathogen. The central regulator of several virulence genes of V. cholerae is ToxR, a transmembrane DNA binding protein. The V. cholerae dnaK mutant grown in standard laboratory medium exhibited phenotypes characteristic of cells deficient in ToxR activity. Using Northern blot analysis and toxR transcriptional fusions, we demonstrated a reduction in expression of the toxR gene in the dnaK mutant strain together with a concomitant increase in expression of a htpG-like heat shock gene that is located immediately upstream and is divergently transcribed from toxR. This may be due to increased heat shock induction in the dnaK mutant. In vivo, however, although expression from heat shock promoters in the dnaK mutant was similar to that observed in vitro, expression of both toxR and htpG was comparable to that by the parental strain. In both strains, in vivo expression of toxR was significantly higher than that observed in vitro, but no reciprocal decrease in htpG expression was observed. These results suggest that the modulation of toxR expression in vivo may be different from that observed in vitro.  (+info)

Transcutaneous immunization with bacterial ADP-ribosylating exotoxins as antigens and adjuvants. (2/2652)

Transcutaneous immunization (TCI) is a new technique that uses the application of vaccine antigens in a solution on the skin to induce potent antibody responses without systemic or local toxicity. We have previously shown that cholera toxin (CT), a potent adjuvant for oral and nasal immunization, can induce both serum and mucosal immunoglobulin G (IgG) and IgA and protect against toxin-mediated mucosal disease when administered by the transcutaneous route. Additionally, CT acts as an adjuvant for coadministered antigens such as tetanus and diphtheria toxoids when applied to the skin. CT, a member of the bacterial ADP-ribosylating exotoxin (bARE) family, is most potent as an adjuvant when the A-B subunits are present and functional. We now show that TCI induces secondary antibody responses to coadministered antigens as well as to CT in response to boosting immunizations. IgG antibodies to coadministered antigens were also found in the stools and lung washes of immunized mice, suggesting that TCI may target mucosal pathogens. Mice immunized by the transcutaneous route with tetanus fragment C and CT developed anti-tetanus toxoid antibodies and were protected against systemic tetanus toxin challenge. We also show that bAREs, similarly organized as A-B subunits, as well as the B subunit of CT alone, induced antibody responses to themselves when given via TCI. Thus, TCI appears to induce potent, protective immune responses to both systemic and mucosal challenge and offers significant potential practical advantages for vaccine delivery.  (+info)

Zonula occludens toxin is a powerful mucosal adjuvant for intranasally delivered antigens. (3/2652)

Zonula occludens toxin (Zot) is produced by toxigenic strains of Vibrio cholerae and has the ability to reversibly alter intestinal epithelial tight junctions, allowing the passage of macromolecules through the mucosal barrier. In the present study, we investigated whether Zot could be exploited to deliver soluble antigens through the nasal mucosa for the induction of antigen-specific systemic and mucosal immune responses. Intranasal immunization of mice with ovalbumin (Ova) and recombinant Zot, either fused to the maltose-binding protein (MBP-Zot) or with a hexahistidine tag (His-Zot), induced anti-Ova serum immunoglobulin G (IgG) titers that were approximately 40-fold higher than those induced by immunization with antigen alone. Interestingly, Zot also stimulated high anti-Ova IgA titers in serum, as well as in vaginal and intestinal secretions. A comparison with Escherichia coli heat-labile enterotoxin (LT) revealed that the adjuvant activity of Zot was only sevenfold lower than that of LT. Moreover, Zot and LT induced similar patterns of Ova-specific IgG subclasses. The subtypes IgG1, IgG2a, and IgG2b were all stimulated, with a predominance of IgG1 and IgG2b. In conclusion, our results highlight Zot as a novel potent mucosal adjuvant of microbial origin.  (+info)

Genetic characterization of a new type IV-A pilus gene cluster found in both classical and El Tor biotypes of Vibrio cholerae. (4/2652)

The Vibrio cholerae genome contains a 5.4-kb pil gene cluster that resembles the Aeromonas hydrophila tap gene cluster and other type IV-A pilus assembly operons. The region consists of five complete open reading frames designated pilABCD and yacE, based on the nomenclature of related genes from Pseudomonas aeruginosa and Escherichia coli K-12. This cluster is present in both classical and El Tor biotypes, and the pilA and pilD genes are 100% conserved. The pilA gene encodes a putative type IV pilus subunit. However, deletion of pilA had no effect on either colonization of infant mice or adherence to HEp-2 cells, demonstrating that pilA does not encode the primary subunit of a pilus essential for these processes. The pilD gene product is similar to other type IV prepilin peptidases, proteins that process type IV signal sequences. Mutational analysis of the pilD gene showed that pilD is essential for secretion of cholera toxin and hemagglutinin-protease, mannose-sensitive hemagglutination (MSHA), production of toxin-coregulated pili, and colonization of infant mice. Defects in these functions are likely due to the lack of processing of N termini of four Eps secretion proteins, four proteins of the MSHA cluster, and TcpB, all of which contain type IV-A leader sequences. Some pilD mutants also showed reduced adherence to HEp-2 cells, but this defect could not be complemented in trans, indicating that the defect may not be directly due to a loss of pilD. Taken together, these data demonstrate the effectiveness of the V. cholerae genome project for rapid identification and characterization of potential virulence factors.  (+info)

Ribotypes of clinical Vibrio cholerae non-O1 non-O139 strains in relation to O-serotypes. (5/2652)

The emergence of Vibrio cholerae O139 in 1992 and reports of an increasing number of other non-O1 serogroups being associated with diarrhoea, stimulated us to characterize V. cholerae non-O1 non-O139 strains received at the National Institute of Infectious Diseases, Japan for serotyping. Ribotyping with the restriction enzyme BglI of 103 epidemiological unrelated mainly clinical strains representing 10 O-serotypes yielded 67 different typing patterns. Ribotype similarity within each serotype was compared by using the Dice coefficient (Sd) and different levels of homogeneity were observed (serotypes O5, O41 and O17, Sd between 82 and 90%: serotypes O13 and O141 Sd of 72; and O2, O6, O7, O11, O24 Sd of 62-66%). By cluster analysis, the strains were divided into several clusters of low similarity suggesting a high level of genetic diversity. A low degree of similarity between serotypes and ribotypes was found as strains within a specific serotypes often did not cluster but clustered with strains from other serotypes. However, epidemiological unrelated O5 strains showed identical or closely related ribotypes suggesting that these strains have undergone few genetic changes and may correspond to a clonal line. Surprisingly, 10 of 16 O141 strains studied contained a cholera toxin (CT) gene, including 7 strains recovered from stool and water samples in the United States. This is to our knowledge the first report of CT-positive clinical O141 strains. The closely related ribotypes shown by eight CT-positive strains is disturbing and suggest that these strains may be of a clonal origin and have the potential to cause cholera-like disease. Despite the low degree of correlation found between ribotypes and serotypes, both methods appears to be valuable techniques in studying the epidemiology of emerging serotypes of V. cholerae.  (+info)

Environmental signals modulate ToxT-dependent virulence factor expression in Vibrio cholerae. (6/2652)

The regulatory protein ToxT directly activates the transcription of virulence factors in Vibrio cholerae, including cholera toxin (CT) and the toxin-coregulated pilus (TCP). Specific environmental signals stimulate virulence factor expression by inducing the transcription of toxT. We demonstrate that transcriptional activation by the ToxT protein is also modulated by environmental signals. ToxT expressed from an inducible promoter activated high-level expression of CT and TCP in V. cholerae at 30 degrees C, but expression of CT and TCP was significantly decreased or abolished by the addition of 0.4% bile to the medium and/or an increase of the temperature to 37 degrees C. Also, expression of six ToxT-dependent TnphoA fusions was modulated by temperature and bile. Measurement of ToxT-dependent transcription of genes encoding CT and TCP by ctxAp- and tcpAp-luciferase fusions confirmed that negative regulation by 37 degrees C or bile occurs at the transcriptional level in V. cholerae. Interestingly, ToxT-dependent transcription of these same promoters in Salmonella typhimurium was relatively insensitive to regulation by temperature or bile. These data are consistent with ToxT transcriptional activity being modulated by environmental signals in V. cholerae and demonstrate an additional level of complexity governing the expression of virulence factors in this pathogen. We propose that negative regulation of ToxT-dependent transcription by environmental signals prevents the incorrect temporal and spatial expression of virulence factors during cholera pathogenesis.  (+info)

G protein activation by human dopamine D3 receptors in high-expressing Chinese hamster ovary cells: A guanosine-5'-O-(3-[35S]thio)- triphosphate binding and antibody study. (7/2652)

Despite extensive study, the G protein coupling of dopamine D3 receptors is poorly understood. In this study, we used guanosine-5'-O-(3-[35S]thio)-triphosphate ([35S]-GTPgammaS) binding to investigate the activation of G proteins coupled to human (h) D3 receptors stably expressed in Chinese hamster ovary (CHO) cells. Although the receptor expression level was high (15 pmol/mg), dopamine only stimulated G protein activation by 1.6-fold. This was despite the presence of marked receptor reserve for dopamine, as revealed by Furchgott analysis after irreversible hD3 receptor inactivation with the alkylating agent, EEDQ (N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline). Thus, half-maximal stimulation of [35S]-GTPgammaS binding required only 11.8% receptor occupation of hD3 sites. In contrast, although the hD2(short) receptor expression level in another CHO cell line was 11-fold lower, stimulation by dopamine was higher (2.5-fold). G protein activation was increased at hD3 and, less potently, at hD2 receptors by the preferential D3 agonists, PD 128,907 [(+)-(4aR,10bR)-3,4,4a, 10b-tetrahydro-4-propyl-2H,5H- [1]benzopyrano[4,3-b]-1, 4-oxazin-9-ol] and (+)-7-OH-DPAT (7-hydroxy-2-(di-n-propylamino)tetralin). Furthermore, the selective D3 antagonists, S 14297 ((+)-[7-(N, N-dipropylamino)-5,6,7, 8-tetrahydro-naphtho(2,3b)dihydro-2,3-furane]) and GR 218,231 (2(R, S)-(dipropylamino)-6-(4-methoxyphenylsulfonylmethyl)-1,2,3,4- tetrahydronaphtalene), blocked dopamine-stimulated [35S]GTPgammaS binding more potently at hD3 than at hD2 sites. Antibodies against Galphai/alphao reduced dopamine-induced G protein activation at both CHO-hD3 and -hD2 membranes, whereas GalphaS antibodies had no effect at either site. In contrast, incubation with anti-Galphaq/alpha11 antibodies, which did not affect dopamine-induced G protein activation at hD2 receptors, attenuated hD3-induced G protein activation. These data suggest that hD3 receptors may couple to Galphaq/alpha11 and would be consistent with the observation that pertussis toxin pretreatment, which inactivates only Gi/o proteins, only submaximally (80%) blocked dopamine-stimulated [35S]GTPgammaS binding in CHO-hD3 cells. Taken together, the present data indicate that 1) hD3 receptors functionally couple to G protein activation in CHO cells, 2) hD3 receptors activate G proteins less effectively than hD2 receptors, and 3) hD3 receptors may couple to different G protein subtypes than hD2 receptors, including nonpertussis sensitive Gq/11 proteins.  (+info)

Dopamine receptor subtypes modulate olfactory bulb gamma-aminobutyric acid type A receptors. (8/2652)

The gamma-aminobutyric acid type A (GABAA) receptor is the predominant Cl- channel protein mediating inhibition in the olfactory bulb and elsewhere in the mammalian brain. The olfactory bulb is rich in neurons containing both GABA and dopamine. Dopamine D1 and D2 receptors are also highly expressed in this brain region with a distinct and complementary distribution pattern. This distribution suggests that dopamine may control the GABAergic inhibitory processing of odor signals, possibly via different signal-transduction mechanisms. We have observed that GABAA receptors in the rat olfactory bulb are differentially modulated by dopamine in a cell-specific manner. Dopamine reduced the currents through GABA-gated Cl- channels in the interneurons, presumably granule cells. This action was mediated via D1 receptors and involved phosphorylation of GABAA receptors by protein kinase A. Enhancement of GABA responses via activation of D2 dopamine receptors and phosphorylation of GABAA receptors by protein kinase C was observed in mitral/tufted cells. Decreasing or increasing the binding affinity for GABA appears to underlie the modulatory effects of dopamine via distinct receptor subtypes. This dual action of dopamine on inhibitory GABAA receptor function in the rat olfactory bulb could be instrumental in odor detection and discrimination, olfactory learning, and ultimately odotopic memory formation.  (+info)