Loading...
(1/2261) Coupling assembly of the E-cadherin/beta-catenin complex to efficient endoplasmic reticulum exit and basal-lateral membrane targeting of E-cadherin in polarized MDCK cells.

The E-cadherin/catenin complex regulates Ca++-dependent cell-cell adhesion and is localized to the basal-lateral membrane of polarized epithelial cells. Little is known about mechanisms of complex assembly or intracellular trafficking, or how these processes might ultimately regulate adhesion functions of the complex at the cell surface. The cytoplasmic domain of E-cadherin contains two putative basal-lateral sorting motifs, which are homologous to sorting signals in the low density lipoprotein receptor, but an alanine scan across tyrosine residues in these motifs did not affect the fidelity of newly synthesized E-cadherin delivery to the basal-lateral membrane of MDCK cells. Nevertheless, sorting signals are located in the cytoplasmic domain since a chimeric protein (GP2CAD1), comprising the extracellular domain of GP2 (an apical membrane protein) and the transmembrane and cytoplasmic domains of E-cadherin, was efficiently and specifically delivered to the basal-lateral membrane. Systematic deletion and recombination of specific regions of the cytoplasmic domain of GP2CAD1 resulted in delivery of <10% of these newly synthesized proteins to both apical and basal-lateral membrane domains. Significantly, >90% of each mutant protein was retained in the ER. None of these mutants formed a strong interaction with beta-catenin, which normally occurs shortly after E-cadherin synthesis. In addition, a simple deletion mutation of E-cadherin that lacks beta-catenin binding is also localized intracellularly. Thus, beta-catenin binding to the whole cytoplasmic domain of E-cadherin correlates with efficient and targeted delivery of E-cadherin to the lateral plasma membrane. In this capacity, we suggest that beta-catenin acts as a chauffeur, to facilitate transport of E-cadherin out of the ER and the plasma membrane.  (+info)

(2/2261) 8-Aminoquinolines active against blood stage Plasmodium falciparum in vitro inhibit hematin polymerization.

From the Walter Reed Army Institute of Research (WRAIR) inventory, thirteen 8-aminoquinoline analogs of primaquine were selected for screening against a panel of seven Plasmodium falciparum clones and isolates. Six of the 13 8-aminoquinolines had average 50% inhibitory concentrations between 50 and 100 nM against these P. falciparum clones and were thus an order of magnitude more potent than primaquine. However, excluding chloroquine-resistant clones and isolates, these 8-aminoquinolines were all an order of magnitude less potent than chloroquine. None of the 8-aminoquinolines was cross resistant with either chloroquine or mefloquine. In contrast to the inactive primaquine prototype, 8 of the 13 8-aminoquinolines inhibited hematin polymerization more efficiently than did chloroquine. Although alkoxy or aryloxy substituents at position 5 uniquely endowed these 13 8-aminoquinolines with impressive schizontocidal activity, the structural specificity of inhibition of both parasite growth and hematin polymerization was low.  (+info)

(3/2261) Comparison of in vivo and in vitro tests of resistance in patients treated with chloroquine in Yaounde, Cameroon.

The usefulness of an isotopic in vitro assay in the field was evaluated by comparing its results with the therapeutic response determined by the simplified WHO in vivo test in symptomatic Cameroonian patients treated with chloroquine. Of the 117 enrolled patients, 102 (87%) completed the 14-day follow-up, and 95 isolates obtained from these patients (46 children, 49 adults) yielded an interpretable in vitro test. A total of 57 of 95 patients (60%; 28 children and 29 adults) had an adequate clinical response with negative smears (n = 46) or with an asymptomatic parasitaemia (n = 11) on day 7 and/or day 14. The geometric mean 50% inhibitory concentration of the isolates obtained from these patients was 63.3 nmol/l. Late and early treatment failure was observed in 29 (30.5%) and 9 (9.5%) patients, respectively. The geometric mean 50% inhibitory concentrations of the corresponding isolates were 173 nmol/l and 302 nmol/l. Among the patients responding with late and early treatment failure, five isolates and one isolate, respectively, yielded a discordant result (in vivo resistance and in vitro sensitivity). The sensitivity, specificity, and predictive value of the in vitro test to detect chloroquine-sensitive cases was 67%, 84% and 86%, respectively. There was moderate concordance between the in vitro and in vivo tests (kappa value = 0.48). The in vitro assay agrees relatively well with the therapeutic response and excludes several host factors that influence the results of the in vivo test. However, in view of some discordant results, the in vitro test cannot substitute for in vivo data on therapeutic efficacy. The only reliable definition of "resistance" in malaria parasites is based on clinical and parasitological response in symptomatic patients, and the in vivo test provides the standard method to determine drug sensitivity or resistance as well as to guide national drug policies.  (+info)

(4/2261) Cholesteryl ester hydrolysis in J774 macrophages occurs in the cytoplasm and lysosomes.

The relationship of cholesteryl ester hydrolysis to the physical state of the cholesteryl ester in J774 murine macrophages was explored in cells induced to store cholesteryl esters either in anisotropic (ordered) inclusions or isotropic (liquid) inclusions. In contrast to other cell systems, the rate of cholesteryl ester hydrolysis was faster in cells containing anisotropic inclusions than in cells containing isotropic inclusions. Two contributing factors were identified. Kinetic analyses of the rates of hydrolysis are consistent with a substrate competition by co-deposited triglyceride in cells with isotropic inclusions. In addition, hydrolysis of cholesteryl esters in cells with anisotropic droplets is mediated by both cytoplasmic and lysosomal lipolytic enzymes, as shown by using the lysosomotropic agent, chloroquine, and an inhibitor of neutral cholesteryl ester hydrolase, umbelliferyl diethylphosphate. In cells containing anisotropic inclusions, hydrolysis was partially inhibited by incubation in media containing either chloroquine or umbelliferyl diethylphosphate. Together, chloroquine and umbelliferyl diethylphosphate completely inhibited hydrolysis. However, when cells containing isotropic inclusions were incubated with umbelliferyl diethylphosphate, cholesteryl ester hydrolysis was completely inhibited, but chloroquine had no effect. Transmission electron microscopy demonstrated a primarily lysosomal location for lipid droplets in cells with anisotropic droplets and both non-lysosomal and lysosomal populations of lipid droplets in cells with isotropic droplets. These results support the conclusion that there is a lysosomal component to the hydrolysis of stored cholesteryl esters in foam cells.  (+info)

(5/2261) Characterization of the culture filtrate-specific cytotoxic T lymphocyte response induced by Bacillus Calmette-Guerin vaccination in H-2b mice.

Although CD8+ T cells are supposed to play an important role in protective immunity to mycobacteria, cytotoxic T lymphocyte (CTL) responses in this infection remain poorly characterized. We previously demonstrated that bacillus Calmette-Guerin (BCG) immunization of H-2b mice induced CTL able to recognize and kill macrophages incubated with proteins from mycobacterial culture supernatant [culture filtrate (CF) antigens]. In the present study, we have further characterized the lytic activity of these CTL and the processing pathway used for the presentation of CF proteins. We show that they use the degranulation pathway (secretion of perforins and granzymes) as the main lytic mechanism of cytotoxicity and also secrete IFN-gamma upon incubation with CF-pulsed macrophages. The in vitro presentation of CF proteins to CTL required a processing step inhibited in the cold but insensitive to Brefeldin A. Transporter-associated protein (TAP)-2-deficient RMA-S cells were efficiently recognized and killed by CF-specific CTL, demonstrating the lack of TAP requirement for this presentation. However, recognition of target cells by CTL was abolished when carried out in the presence of chloroquine. These results indicate that a non-classical MHC class I-processing pathway allows the recognition of a CF protein by CTL in BCG-vaccinated H-2b mice.  (+info)

(6/2261) Sortilin/neurotensin receptor-3 binds and mediates degradation of lipoprotein lipase.

Lipoprotein lipase and the receptor-associated protein (RAP) bind to overlapping sites on the low density lipoprotein receptor-related protein/alpha2-macroglobulin receptor (LRP). We have investigated if lipoprotein lipase interacts with the RAP binding but structurally distinct receptor sortilin/neurotensin receptor-3. We show, by chemical cross-linking and surface plasmon resonance analysis, that soluble sortilin binds lipoprotein lipase with an affinity similar to that of LRP. The binding was inhibited by heparin and RAP and by the newly discovered sortilin ligand neurotensin. In 35S-labeled 3T3-L1 adipocytes treated with the cross-linker dithiobis(succinimidyl propionate), lipoprotein lipase-containing complexes were isolated by anti-sortilin antibodies. To elucidate function in cells, sortilin-negative Chinese hamster ovary cells were transfected with full-length sortilin and shown to express about 8% of the receptors on the cell surface. These cells degraded 125I-labeled lipoprotein lipase much faster than the wild-type cells. The degradation was inhibited by unlabeled lipoprotein lipase, indicating a saturable pathway, and by RAP and heparin. Moreover, inhibition by the weak base chloroquine suggested that degradation occurs in an acidic vesicle compartment. The results demonstrate that sortilin is a multifunctional receptor that binds lipoprotein lipase and, when expressed on the cell surface, mediates its endocytosis and degradation.  (+info)

(7/2261) Chinese hamster ovary cells require the coexpression of microsomal triglyceride transfer protein and cholesterol 7alpha-hydroxylase for the assembly and secretion of apolipoprotein B-containing lipoproteins.

Due to the absence of microsomal triglyceride transfer protein (MTP), Chinese hamster ovary (CHO) cells lack the ability to translocate apoB into the lumen of the endoplasmic reticulum, causing apoB to be rapidly degraded by an N-acetyl-leucyl-leucyl-norleucinal-inhibitable process. The goal of this study was to examine if expression of MTP, whose genetic deletion is responsible for the human recessive disorder abetalipoproteinemia, would recapitulate the lipoprotein assembly pathway in CHO cells. Unexpectedly, expression of MTP mRNA and protein in CHO cells did not allow apoB-containing lipoproteins to be assembled and secreted by CHO cells expressing apoB53. Although expression of MTP in cells allowed apoB to completely enter the endoplasmic reticulum, it was degraded by a proteolytic process that was inhibited by dithiothreitol (1 mM) and chloroquine (100 microM), but resistant to N-acetyl-leucyl-leucyl-norleucinal. In marked contrast, coexpression of the liver-specific gene product cholesterol 7alpha-hydroxylase with MTP resulted in levels of MTP lipid transfer activity that were similar to those in mouse liver and allowed intact apoB53 to be secreted as a lipoprotein particle. These data suggest that, although MTP-facilitated lipid transport is not required for apoB translocation, it is required for the secretion of apoB-containing lipoproteins. We propose that, in CHO cells, MTP plays two roles in the assembly and secretion of apoB-containing lipoproteins: 1) it acts as a chaperone that facilitates apoB53 translocation, and 2) its lipid transfer activity allows apoB-containing lipoproteins to be assembled and secreted. Our results suggest that the phenotype of the cell (e.g. expression of cholesterol 7alpha-hydroxylase by the liver) may profoundly influence the metabolic relationships determining how apoB is processed into lipoproteins and/or degraded.  (+info)

(8/2261) Non-viral neuronal gene delivery mediated by the HC fragment of tetanus toxin.

Many inherited neurological diseases and cancers could potentially benefit from efficient targeted gene delivery to neurons of the central nervous system. The nontoxic fragment C (HC) of tetanus toxin retains the specific nerve cell binding and transport properties of tetanus holotoxin. The HC fragment has previously been used to promote the uptake of attached proteins such as horseradish peroxidase, beta-galactosidase and superoxide dismutase into neuronal cells in vitro and in vivo. We report the use of purified recombinant HC fragment produced in yeast and covalently bound to polylysine [poly(K)] to enable binding of DNA. We demonstrate that when used to transfect cells, this construct results in nonviral gene delivery and marker gene expression in vitro in N18 RE 105 cells (a neuroblastoma x glioma mouse/rat hybrid cell line) and F98 (a glioma cell line). Transfection was dependent on HC and was neuronal cell type specific. HC may prove a useful targeting ligand for future neuronal gene therapy.  (+info)