D1-D2 protein degradation in the chloroplast. Complex light saturation kinetics. (9/4503)

The D1 and D2 proteins of the photosystem II (PSII) reaction center are stable in the dark, while rapid degradation occurs in the light. Thus far, a quantitative correlation between degradation and photon fluences has not been determined. In Spirodela oligorrhiza, D1-D2 degradation increases with photon flux. We find that kinetics for D2 degradation mirror those for D1, except that the actual half-life times of the D2 protein are about three times larger than those of the D1. The degradation ratio, D2/D1, is fluence independent, supporting the proposal [Jansen, M.A.K., Greenberg, B.M., Edelman, M., Mattoo, A.K. & Gaba, V. (1996), Photochem. Photobiol. 63, 814-817] that degradation of the two proteins is coupled. It is commonly conceived that D1 degradation is predominantly associated with photon fluences that are supersaturating for photosynthesis. We now show that a fluence as low as 5 mumol.m-2.s-1 elicited a reaction constituting > 25% of the total degradation response, while > 90% of the degradation potential was attained at intensities below saturation for photosynthesis (approximately 750 mumol.m-2.s-1). Thus, in intact plants, D1 degradation is overwhelmingly associated with fluences limiting for photosynthesis. D1 degradation increases with photon flux in a complex, multiphasic manner. Four phases were uncovered over the fluence range from 0-1600 mumol.m-2.s-1. The multiphasic saturation kinetics underscore that the D1 and D2 degradation response is complex, and emanates from more than one parameter. The physiological processes associated with each phase remain to be determined.  (+info)

Isolation of a highly active PSII-LHCII supercomplex from thylakoid membranes by a direct method. (10/4503)

We have developed a simple and novel method to isolate a highly pure and active photosystem (PS) II complex, directly from thylakoid membranes. This complex is a discrete particle and contains all the proteins of the oxygen evolving complex and a set of chlorophyll alb binding proteins. The intactness of both the donor side and the acceptor side has resulted in a very high oxygen evolution activity and therefore offers a superior experimental system to that of PSII enriched membrane fragments in which there is heterogeneity in activities and biochemical composition.  (+info)

Particle bombardment mediated transformation and GFP expression in the moss Physcomitrella patens. (11/4503)

There are few plants facilitated for the study of development, morphogenesis and gene expression at the cellular level. The moss Physcomitrella patens can be a very useful plant with several advantages: simple life cycle containing a major haploid gametophyte stage, easy manipulation, small genome size (6 x 10(8) bp) and high similarities with higher plants. To establish the transformation system of mosses as a model for basic plant research, a series of experiments were performed. Mosses were cultured in cellophane overlaid BCD media, transformed by particle bombardment and selected by the choice of appropriate antibiotics. Initial transformants appeared 8 d or 14 d after selection, showing different sensitivities toward the antibiotics used. Heat treatment during the preparation of particles revealed that denaturing the DNA enabled a more efficient way to deliver a transgene into the chromosome. This was proven by the increase in the number of transformants by five times in the plants with denatured DNA. In the test for the repairing capacity of mosses, 154 and 195 transformants survived from 1 d and 3 d incubations, respectively, indicating that a longer period of incubation seemed to be recommendable for better survival. The selected transformants were further analyzed at the DNA and expression level. Transformed genes were confirmed by PCR where all the transformants showed the expected size of amplification. Histochemical beta-glucuronidase (GUS) and green fluorescent protein (GFP) expression also confirmed the integration of exogenous DNA. In a comparison of the two different forms of GFP, soluble-modified GFP (smGFP) expressed stronger signals than modified GFP (mGFP) due to its improved solubility. Confirmation of the transgene in the chloroplast transformation has improved the applicability of moss as a model system for the study of basic biological researches.  (+info)

Subcellular localization of the BtpA protein in the cyanobacterium Synechocystis sp. PCC 6803. (12/4503)

Photosystem I is a large pigment-protein complex embedded in the thylakoid membranes of chloroplasts and cyanobacteria. In the cyanobacterium Synechocystis sp. PCC 6803, the btpA gene encodes a 30-kDa polypeptide. Mutations in this gene significantly affect accumulation of the reaction center proteins of photosystem I in Synechocystis 6803 [Bartsevich, V. V. & Pakrasi, H. B. (1997) J. Biol. Chem. 272, 6372-6378]. We describe here the intracellular localization of the BtpA protein. Immunolocalization in Synechocystis 6803 cells demonstrated that the BtpA protein is tightly associated with the thylakoid membranes. Phase fractionation in the detergent Triton X-114 indicated that BtpA is a peripheral membrane protein. To determine which surface of the thylakoid membrane BtpA is exposed to, we used a two-phase polymer partitioning technique to develop a novel method to isolate inside-out and right-side-out thylakoid vesicles from Synechocystis 6803. Treatments of such vesicles with different salts and protease showed that the BtpA protein is an extrinsic membrane protein which is exposed to the cytoplasmic face of the thylakoid membrane.  (+info)

Crystallization and a 5 A X-ray diffraction study of Aphanothece sacrum ferredoxin. (13/4503)

A chloroplast-type ferredoxin containing two non-heme iron and two labile sulfur atoms per molecule was prepared from Aphanothece sacrum. Crystals were obtained by dialysis against 75% saturated a-monium sulfate solution, and belong to the tetragonal system with cell dimensions a = b = 92.2 A and c = 47.6 A, containing four molecules in an asymmetric unit. The electron density map at 5 A resolution was calculated by using the best phase angles determined by the single isomorphous replacement method coupled with the anomalous dispersion effect. An anomalous dispersion difference Fourier map for the native crystal clearly showed four humps corresponding to the iron atoms in an asymmetric unit. The electron densis surface.  (+info)

Pollen ultrastructure in anther cultures of Datura innoxia. I. Division of the presumptive vegetative cell. (14/4503)

Ultrastructural features of embryogenic pollen in Datura innoxia are described, just prior to, during, and after completion of the first division of the presumptive vegetative cell. In anther cultures initiated towards the end of the microspore phase and incubated at 28 degrees C in darkness, the spores divide within 24 h and show features consistent with those of dividing spores in vivo. Cytokinesis is also normal in most of the spores and the gametophytic cell-plate curves round the presumptive generative nucleus in the usual highly ordered way. Further differentiation of the 2 gametophytic cells does not take place and the pollen either switches to embryogenesis or degenerates. After 48-72 h, the remaining viable pollen shows the vegetative cell in division. The cell, which has a large vacuole and thin layer of parietal cytoplasm carried over from the microspore, divides consistently in a plane parallel to the microspore division. The dividing wall follows a less-ordered course than the gametophytic wall and usually traverses the vacuole, small portions of which are incorporated into the daughter cell adjacent to the generative cell. The only structural changes in the vegetative cell associated with the change in programme appear to be an increase in electron density of both plastids and mitochondria and deposition of an electron-dense material (possibly lipid) on the tonoplast. The generative cell is attached to the intine when the vegetative cell divides. Ribosomal density increases in the generative cell and exceeds that in the vegetative cell. A thin electron-dense layer also appears in the generative-cell wall. It is concluded that embryogenesis commences as soon as the 2 gametophytic cells are laid down. Gene activity associated with postmitotic synthesis of RNA and protein in the vegetative cell is switched off. The data are discussed in relation to the first division of the embryogenic vegetative cells in Nicotiana tabacum.  (+info)

Chloroplast-targeted ERD1 protein declines but its mRNA increases during senescence in Arabidopsis. (15/4503)

Arabidopsis ERD1 is a ClpC-like protein that sequence analysis suggests may interact with the chloroplast-localized ClpP protease to facilitate proteolysis. The mRNA encoded by the ERD1 gene has previously been shown to accumulate in response to senescence and to a variety of stresses and hormones. Here we show that the ERD1 protein, in contrast to the ERD1 mRNA, strongly declines in abundance with age, becoming undetectable in fully expanded leaves. Sequence analysis also suggests that ERD1 is chloroplast targeted, and we show in an in vitro system that the native protein is properly imported, processed, and present within the soluble fraction of the chloroplast, presumably the stroma. We show that ClpP protein, which is also present in the stroma, declines with age in parallel with ERD1. These results are consistent with the interaction of ERD1 and ClpP, but they suggest that it is unlikely that either plays a major role during senescence. Certain other chloroplast proteins decline with age coordinately with ERD1 and ClpP, suggesting that these declines are markers of an early age-mediated change that occurs within the chloroplast.  (+info)

Protective function of chloroplast 2-cysteine peroxiredoxin in photosynthesis. Evidence from transgenic Arabidopsis. (16/4503)

2-Cysteine peroxiredoxins (2-CPs) constitute a ubiquitous group of peroxidases that reduce cell-toxic alkyl hydroperoxides to their corresponding alcohols. Recently, we cloned 2-CP cDNAs from plants and characterized them as chloroplast proteins. To elucidate the physiological function of the 2-CP in plant metabolism, we generated antisense mutants in Arabidopsis. In the mutant lines a 2-CP deficiency developed during early leaf and plant development and eventually the protein accumulated to wild-type levels. In young mutants with reduced amounts of 2-CP, photosynthesis was impaired and the levels of D1 protein, the light-harvesting protein complex associated with photosystem II, chloroplast ATP synthase, and ribulose-1,5-bisphosphate carboxylase/oxygenase were decreased. Photoinhibition was particularly pronounced after the application of the protein synthesis inhibitor, lincomycin. We concluded that the photosynthetic machinery needs high levels of 2-CP during leaf development to protect it from oxidative damage and that the damage is reduced by the accumulation of 2-CP protein, by the de novo synthesis and replacement of damaged proteins, and by the induction of other antioxidant defenses in 2-CP mutants.  (+info)