Chloroplast SecY is complexed to SecE and involved in the translocation of the 33-kDa but not the 23-kDa subunit of the oxygen-evolving complex. (17/4503)

SecY is a component of the protein-conducting channel for protein transport across the cytoplasmic membrane of prokaryotes. It is intimately associated with a second integral membrane protein, SecE, and together with SecA forms the minimal core of the preprotein translocase. A chloroplast homologue of SecY (cpSecY) has previously been identified and determined to be localized to the thylakoid membrane. In the present work, we demonstrate that a SecE homologue is localized to the thylakoid membrane, where it forms a complex with cpSecY. Digitonin solubilization of thylakoid membranes releases the SecY/E complex in a 180-kDa form, indicating that other components are present and/or the complex is a higher order oligomer of the cpSecY/E dimer. To test whether cpSecY forms the protein-conducting channel of the thylakoid membrane, translocation assays were conducted with the SecA-dependent substrate OE33 and the SecA-independent substrate OE23, in the presence and absence of antibodies raised against cpSecY. The antibodies inhibited translocation of OE33 but not OE23, indicating that cpSecY comprises the protein-conducting channel used in the SecA-dependent pathway, whereas a distinct protein conducting channel is used to translocate OE23.  (+info)

Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. (18/4503)

Land plants are sessile and have developed sophisticated mechanisms that allow for both immediate and acclimatory responses to changing environments. Partial exposure of low light-adapted Arabidopsis plants to excess light results in a systemic acclimation to excess excitation energy and consequent photooxidative stress in unexposed leaves. Thus, plants possess a mechanism to communicate excess excitation energy systemically, allowing them to mount a defense against further episodes of such stress. Systemic redox changes in the proximity of photosystem II, hydrogen peroxide, and the induction of antioxidant defenses are key determinants of this mechanism of systemic acquired acclimation.  (+info)

Chloroplast class I and class II aldolases are bifunctional for fructose-1,6-biphosphate and sedoheptulose-1,7-biphosphate cleavage in the Calvin cycle. (19/4503)

Class I and class II aldolases are products of two evolutionary non-related gene families. The cytosol and chloroplast enzymes of higher plants are of the class I type, the latter being bifunctional for fructose-1,6- and sedoheptulose-1,7-P2 in the Calvin cycle. Recently, class II aldolases were detected for the cytosol and chloroplasts of the lower alga Cyanophora paradoxa. The respective chloroplast enzyme has been shown here to be also bifunctional for fructose-1,6- and sedoheptulose-1,7-P2. Kinetics, also including fructose-1-P, were determined for all these enzymes. Apparently, aldolases are multifunctional enzymes, irrespective of their class I or class II type.  (+info)

Involvement of a chloroplast homologue of the signal recognition particle receptor protein, FtsY, in protein targeting to thylakoids. (20/4503)

We isolated an Arabidopsis thaliana cDNA whose translated product shows sequence similarity to the FtsY, a bacterial homologue of SRP receptor protein. The Arabidopsis FtsY homologue contains a typical chloroplast transit peptide. The in vitro-synthesized 37 kDa FtsY homologue was imported into chloroplasts, and the processed 32 kDa polypeptide bound peripherally on the outer surface of thylakoids. Antibodies raised against the FtsY homologue also reacted with a thylakoid-bound 32 kDa protein. The antibodies inhibited the cpSRP-dependent insertion of the light-harvesting chlorophyll alb-binding protein into thylakoid membranes suggesting that the chloroplast FtsY homologue is involved in the cpSRP-dependent protein targeting to the thylakoid membranes.  (+info)

Light-dependent changes in redox status of the plastidic acetyl-CoA carboxylase and its regulatory component. (21/4503)

Plastidic acetyl-CoA carboxylase (ACCase; EC 6.4.1.2), which catalyses the synthesis of malonyl-CoA and is the regulatory enzyme of fatty acid synthesis, is activated by light, presumably under redox regulation. To obtain evidence of redox regulation in vivo, the activity of ACCase was examined in pea chloroplasts isolated from plants kept in darkness (dark-ACCase) or after exposure to light for 1 h (light-ACCase) in the presence or absence of a thiol-reducing agent, dithiothreitol (DTT). The protein level was similar for light-ACCase and dark-ACCase, but the activity of light-ACCase in the absence of DTT was approx. 3-fold that of dark-ACCase. The light-ACCase and dark-ACCase were activated approx. 2-fold and 6-fold by DTT respectively, indicating that light-ACCase was in a much more reduced, active form than the dark-ACCase. This is the first demonstration of the light-dependent reduction of ACCase in vivo. Measurement of the activities of ACCase, carboxyltransferase and biotin carboxylase in the presence and absence of DTT, and the thiol-oxidizing agent, 5, 5'-dithiobis-(2-nitrobenzoic) acid, revealed that the carboxyltransferase reaction, but not the biotin carboxylase reaction, was redox-regulated. The cysteine residue(s) responsible for redox regulation probably reside on the carboxyltransferase component. Measurement of the pH dependence of biotin carboxylase and carboxyltransferase activities in the ACCase suggested that both components affect the activity of ACCase in vivo at a physiological pH range. These results suggest that the activation of ACCase by light is caused partly by the pH-dependent activation of two components and by the reductive activation of carboxyltransferase.  (+info)

The stromal protein large subunit of ribulose-1,5-bisphosphate carboxylase is translated by membrane-bound ribosomes. (22/4503)

Translation of the large subunit of ribulose-1,5-bisphosphate carboxylase (LSU) was investigated by labeling of isolated barley plastids with [35S]-methionine. In both chloroplasts and etioplasts, labeling of LSU was severely impaired if plastid membranes were removed from the reaction mixtures. Removal of membrane-bound polysomes with high salt or puromycin greatly decreased translation of LSU. Pulse-labeled chloroplast membranes were shown to release LSU if chased with unlabeled methionine in the presence of stroma. Immunoprecipitation detected higher amounts of labeled LSU translation intermediates associated with the membrane fraction than in the soluble fraction. We therefore conclude that, in plastids, membrane-bound polysomes are required not only for translation of membrane-intrinsic proteins but also for translation of a soluble protein.  (+info)

A phosphoglycerate to inorganic phosphate ratio is the major factor in controlling starch levels in chloroplasts via ADP-glucose pyrophosphorylase regulation. (23/4503)

Purified barley leaf ADP-glucose pyrophosphorylase, a key enzyme of the starch synthesis in the chloroplast stroma, was analysed with respect to its possible regulation by factors defining the metabolic/effector status of the chloroplast during light and dark conditions. The enzyme required 3-phosphoglyceric acid for the maximal activity and was inhibited by inorganic phosphate. The optimal pH for the enzyme was at circa 7.0, regardless of the presence or absence of 3-phosphoglyceric acid, whereas the maximal activation by 3-phosphoglyceric acid was observed at pH 8.5 and higher. Changes in the concentration of Mg2+ and dithiothreitol had little or no effect on the enzymatic activity of AGPase. It has been directly demonstrated for the first time that a 3-phosphoglyceric acid/inorganic phosphate ratio, a crucial regulatory parameter, could be directly related to a defined activation state of the enzyme, allowing the prediction of a relative AGPase activity under given conditions. The predicted changes in the enzyme activity were directly correlated with earlier reported responses of starch levels to the 3-phosphoglyceric acid/inorganic phosphate ratio in chloroplasts. Consequences of this for the starch biosynthesis are discussed.  (+info)

Quality control: from molecules to organelles. (24/4503)

There is a vast body of literature on the quality control of protein folding and assembly into multisubunit complexes. Such control takes place everywhere in the cell. The correcting mechanisms involve cytosolic and organellar proteases; the result of such control is individual molecules with proper structure and individual complexes both with proper stoichiometry and proper structure. Obviously, the formation of organelles as such requires some additional criteria of correctness and some new mechanisms of their implementation. It is proposed in this article that the ability to carry out an integral (key) function may serve as a criterion of correct organelle assembly and that autophagy can be accepted as a mechanism eliminating the assembly mistakes.  (+info)