The localisation of 2-carboxy-D-arabinitol 1-phosphate and inhibition of Rubisco in leaves of Phaseolus vulgaris L. (1/2508)

A recent controversial report suggests that the nocturnal inhibitor of Rubisco, 2-carboxy-D-arabinitol 1-phosphate (CAIP), does not bind to Rubisco in vivo and therefore that CA1P has no physiological relevance to photosynthetic regulation. It is now proved that a direct rapid assay can be used to distinguish between Rubisco-bound and free CA1P, as postulated in the controversial report. Application of this direct assay demonstrates that CA1P is bound to Rubisco in vivo in dark-adapted leaves. Furthermore, CA1P is shown to be in the chloroplasts of mesophyll cells. Thus, CA1P does play a physiological role in the regulation of Rubisco.  (+info)

Mg-chelatase of tobacco: the role of the subunit CHL D in the chelation step of protoporphyrin IX. (2/2508)

The Mg-chelation is found to be a prerequisite to direct protoporphyrin IX into the chlorophyll (Chl)-synthesizing branch of the tetrapyrrol pathway. The ATP-dependent insertion of magnesium into protoporphyrin IX is catalyzed by the enzyme Mg-chelatase, which consists of three protein subunits (CHL D, CHL I, and CHL H). We have chosen the Mg-chelatase from tobacco to obtain more information about the mode of molecular action of this complex enzyme by elucidating the interactions in vitro and in vivo between the central subunit CHL D and subunits CHL I and CHL H. We dissected CHL D in defined peptide fragments and assayed for the essential part of CHL D for protein-protein interaction and enzyme activity. Surprisingly, only a small part of CHL D, i.e., 110 aa, was required for interaction with the partner subunits and maintenance of the enzyme activity. In addition, it could be demonstrated that CHL D is capable of forming homodimers. Moreover, it interacted with both CHL I and CHL H. Our data led to the outline of a two-step model based on the cooperation of the subunits for the chelation process.  (+info)

Structural analysis of DNA-chlorophyll complexes by Fourier transform infrared difference spectroscopy. (3/2508)

Porphyrins and metalloporphyrins are strong DNA binders. Some of these compounds have been used for radiation sensitization therapy of cancer and are targeted to interact with cellular DNA. This study was designed to examine the interaction of calf thymus DNA with chlorophyll a (CHL) in aqueous solution at physiological pH with CHL/DNA(phosphate) ratios (r) of 1/160, 1/80, 1/40, 1/20, 1/10, and 1/5. Fourier transform infrared (FTIR) difference spectroscopy was used to characterize the nature of DNA-pigment interactions and to establish correlations between spectral changes and the CHL binding mode, binding constant, sequence selectivity, DNA secondary structure, and structural variations of DNA-CHL complexes in aqueous solution. Spectroscopic results showed that CHL is an external DNA binder with no affinity for DNA intercalation. At low pigment concentration (r = 1/160, 1/80, and 1/40), there are two major binding sites for CHL on DNA duplex: 1) Mg-PO2 and 2) Mg-N7 (guanine) with an overall binding constant of K = 1.13 x 10(4) M-1. The pigment distributions are 60% with the backbone PO2 group and 20% with the G-C base pairs. The chlorophyll interaction is associated with a major reduction of B-DNA structure in favor of A-DNA. At high chlorophyll content (r = 1/10), helix opening occurs, with major spectral alterations of the G-C and A-T bases. At high chlorophyll concentration (1/5), pigment aggregation is observed, which does not favor CHL-DNA complexation.  (+info)

Quenching of chlorophyll fluorescence by triplets in solubilized light-harvesting complex II (LHCII). (4/2508)

The quenching of chlorophyll fluorescence by triplets in solubilized trimeric light harvesting complexes was analyzed by comparative pump-probe experiments that monitor with weak 2-ns probe pulses the fluorescence yield and changes of optical density, DeltaOD, induced by 2-ns pump pulses. By using a special array for the measurement of the probe fluorescence (Schodel R., F. Hillman, T. Schrotter, K.-D. Irrgang, J. Voight, and G. Biophys. J. 71:3370-3380) the emission caused by the pump pulses could be drastically reduced so that even at highest pump pulse intensities, IP, no significant interference with the signal due to the probe pulse was observed. The data obtained reveal: a) at a fixed time delay of 50 ns between pump and probe pulse the fluorescence yield of the latter drastically decreased with increasing IP, b) the recovery of the fluorescence yield in the microseconds time domain exhibits kinetics which are dependent on IP, c) DeltaOD at 507 nm induced by the pump pulse and monitored by the probe pulse with a delay of 50 ns (reflecting carotenoid triplets) increases with IP without reaching a saturation level at highest IP values, d) an analogous feature is observed for the bleaching at 675 nm but it becomes significant only at very high IP values, e) the relaxation of DeltaOD at 507 nm occurs via a monophasic kinetics at all IP values whereas DeltaOD at 675 nm measured under the same conditions is characterized by a biphasic kinetics with tau values of about 1 microseconds and 7-9 microseconds. The latter corresponds with the monoexponential decay kinetics of DeltaOD at 507 nm. Based on a Stern-Volmer plot, the time-dependent fluorescence quenching is compared with the relaxation kinetics of triplets. It is shown that the fluorescence data can be consistently described by a quenching due to triplets.  (+info)

Electronic spectra of PS I mutants: the peripheral subunits do not bind red chlorophylls in Synechocystis sp. PCC 6803. (5/2508)

Steady-state fluorescence and absorption spectra have been obtained in the Qy spectral region (690-780 nm and 600-750 nm, respectively) for several subunit-deficient photosystem I mutants from the cyanobacterium Synechocystis sp. PCC 6803. The 77 K fluorescence spectra of the wild-type and subunit-deficient mutant photosystem I particles are all very similar, peaking at approximately 720 nm with essentially the same excitation spectrum. Because emission from far-red chlorophylls absorbing near 708 nm dominates low-temperature fluorescence in Synechocystis sp., these pigments are not coordinated to any the subunits PsaF, Psa I, PsaJ, PsaK, PsaL, or psaM. The room temperature (wild-type-mutant) absorption difference spectra for trimeric mutants lacking the PsaF/J, PsaK, and PsaM subunits suggest that these mutants are deficient in core antenna chlorophylls (Chls) absorbing near 685, 670, 675, and 700 nm, respectively. The absorption difference spectrum for the PsaF/J/I/L-deficient photosystem I complexes at 5 K reveals considerably more structure than the room-temperature spectrum. The integrated absorbance difference spectra (when normalized to the total PS I Qy spectral area) are comparable to the fractions of Chls bound by the respective (groups of) subunits, according to the 4-A density map of PS I from Synechococcus elongatus. The spectrum of the monomeric PsaL-deficient mutant suggests that this subunit may bind pigments absorbing near 700 nm.  (+info)

Heterologous expression of Arabidopsis phytochrome B in transgenic potato influences photosynthetic performance and tuber development. (6/2508)

Transgenic potato (Solanum tuberosum) plants expressing Arabidopsis phytochrome B were characterized morphologically and physiologically under white light in a greenhouse to explore their potential for improved photosynthesis and higher tuber yields. As expected, overexpression of functional phytochrome B caused pleiotropic effects such as semidwarfism, decreased apical dominance, a higher number of smaller but thicker leaves, and increased pigmentation. Because of increased numbers of chloroplasts in elongated palisade cells, photosynthesis per leaf area and in each individual plant increased. In addition, photosynthesis was less sensitive to photoinactivation under prolonged light stress. The beginning of senescence was not delayed, but deceleration of chlorophyll degradation extended the lifetime of photosynthetically active plants. Both the higher photosynthetic performance and the longer lifespan of the transgenic plants allowed greater biomass production, resulting in extended underground organs with increased tuber yields.  (+info)

Expression of 1-aminocyclopropane-1-carboxylate oxidase during leaf ontogeny in white clover. (7/2508)

We examined the expression of three distinct 1-aminocyclopropane-1-carboxylic acid oxidase genes during leaf ontogeny in white clover (Trifolium repens). Significant production of ethylene occurs at the apex, in newly initiated leaves, and in senescent leaf tissue. We used a combination of reverse transcriptase-polymerase chain reaction and 3'-rapid amplification of cDNA ends to identify three distinct DNA sequences designated TRACO1, TRACO2, and TRACO3, each with homology to 1-aminocyclopropane-1-carboxylic acid oxidase. Southern analysis confirmed that these sequences represent three distinct genes. Northern analysis revealed that TRACO1 is expressed specifically in the apex and TRACO2 is expressed in the apex and in developing and mature green leaves, with maximum expression in developing leaf tissue. The third gene, TRACO3, is expressed in senescent leaf tissue. Antibodies were raised to each gene product expressed in Escherichia coli, and western analysis showed that the TRACO1 antibody recognizes a protein of approximately 205 kD (as determined by gradient sodium dodecyl sulfate-polyacylamide gel electrophoresis) that is expressed preferentially in apical tissue. The TRACO2 antibody recognizes a protein of approximately 36.4 kD (as determined by gradient sodium dodecyl sulfate-polyacylamide gel electrophoresis) that is expressed in the apex and in developing and mature green leaves, with maximum expression in mature green tissue. No protein recognition by the TRACO3 antibody could be detected in senescent tissue or at any other stage of leaf development.  (+info)

Isolation and characterisation of oxygen evolving thylakoids from the marine prokaryote Prochloron didemni. (8/2508)

The present study describes the first successful attempt to isolate oxygen evolving thylakoids and thylakoid fragments from the marine prokaryote Prochloron didemni, a member of the recently discovered group of prochlorophytes. Oxygen evolving thylakoid membranes and fragments were isolated from seawater suspended cells of Prochloron didemni by passage of the cells through a Yeda press and subsequent differential centrifugation of the broken material. Three fractions were collected at 1000 x g, 5000 x g, and 3000 x g and identified by light microscopy as cells (and their fragments), thylakoids and membrane fragments, respectively. Pigment content, oxygen evolution rate and 77 K fluorescence spectra of these fractions were virtually identical. This finding indicates that the membrane fragments obtained are not enriched in photosystem II. The P680+* reduction kinetics of thylakoid membrane fragments were determined by monitoring flash induced absorption changes at 830 nm and analysing the time course of their decay. The multiphasic relaxation kinetics and their modification by NH2OH were found to be similar to those observed in cyanobacteria and plants. These findings provide an independent line of evidence for the idea of a high conservation of the basic structural and functional pattern of the water oxidising complex in all organisms that perform oxygenic photosynthesis.  (+info)