PBPK modeling of canine inhalation exposures to halogenated hydrocarbons. (9/60)

Human exposure guidelines for halogenated hydrocarbons (halons) and halon replacement chemicals have been established using dose-response data obtained from canine cardiac sensitization studies. In order to provide a tool for decision makers and regulators tasked with setting guidelines for egress from exposure to halon replacement chemicals, a quantitative approach, using a physiologically based pharmacokinetic model, was established that allowed exposures to be assessed in terms of the chemical concentrations in blood during the exposure. This model, which includes a respiratory tract compartment containing a dead-space region, a pulmonary exchange area, and a breath-by-breath description of respiratory tract uptake, allows successful simulation of exhaled breath concentrations of humans during the first minute of exposure to the anesthetics halothane, isoflurane, and desflurane. In the current study, the human model was modified with canine parameters and validated with data obtained from dog studies with halothane, isoflurane, desflurane, and CFC-11. With consideration of appropriate values for ventilation and cardiac output, the model successfully simulated data collected under a variety of exposure scenarios. The canine model can be used for simulating blood concentrations associated with the potential for cardiac sensitization. These target blood concentrations can then be used with the human model for establishing safe human exposure duration. Development of the canine model stresses the need for appropriate data collection for model validation.  (+info)

Exposure to halogenated hydrocarbons in the indoor environment. (10/60)

The indoor environment has frequently been ignored as a significant source of exposure to air pollutants. To date there are a number of documented examples of levels of indoor air pollutants greatly exceeding those levels which commonly occur in the outdoor environment. Among these instances are airborne buildup of polynuclear aromatics and cadmium from cigarette smoke, lead from burning candles, and vinyl chloride from use of aerosols containing this substance as a propellant. These examples suggest that there may be additional sources of indoor air pollutants, particularly halogenated hydrocarbons from aerosol products, which have heretofore not been generally recognized as important. The present paper endeavors to review those instances where halogenated hydrocarbons in the indoor air environment may build up to concentrations of potential public health concern. These considerations may be especially relevant in future years as increasing efforts are being made to insulate buildings more efficiently as a means to conserve energy. The available data strongly suggest that halogenated hydrocarbons are an important class of air pollutants in the indoor environment and that their presence in the outdoor environment should also be carefully examined. In this regard, halogenated hydrocarbons in the outdoor environment may also contaminate indoor air spaces.  (+info)

Occupational voice disorders due to workplace exposure to irritants--a review of the literature. (11/60)

The medical literature contains relatively few examples of reports of voice disorders that could be attributed to chemical exposure at work. General medical conditions such as gastro-oesophageal reflux and the use of medication such as inhaled steroids are well-recognized causes of laryngitis, but the occupational causes are less well documented. This paper describes the results of a literature review looking at the reporting of cases of occupationally acquired voice disorders due to exposure to irritants in the workplace.  (+info)

Inhalation of decomposed chlorodifluoromethane (freon-22) and myocardial infarction. (12/60)

After exposure to decomposed chlorodifluoromethane (freon-22), a 65-year-old man developed respiratory symptoms such as cough, blood-stained sputum, and increasing dyspnea. Three weeks later, his family doctor diagnosed infectious bronchitis. Another week later he died due to myocardial infarction. The discussion focuses on an inflammatory process caused by the inhalation of decomposed freon and its possible association with myocardial infarction.  (+info)

Prolonged respiratory symptoms caused by thermal degradation products of freons. (13/60)

OBJECTIVES: The chlorofluorocarbons (CFC) used in refrigeration systems decompose on heating and produce substances that are highly irritating to the airways (eg, chlorine, carbonyl fluoride, and hydrogen fluoride). This study examined persistent respiratory symptoms among several workers exposed to thermal decomposition products of CFC. METHODS: Seven patients with respiratory symptoms caused by inadvertent exposure to thermal decomposition products of CFC in a restaurant kitchen or during refrigerator repair were studied with the use of spirometry, peak flow follow-up, and histamine challenge tests. Three patients also underwent bronchoscopy and bronchoalveolar lavage. RESULTS: In five of the cases, cough or dyspnea lasted longer than 1 month; for three of the five, the symptoms lasted more than 4 years. Three cases showed increased bronchial hyperreactivity, and two of the three had increased diurnal peak flow variation. Three patients fulfilled the criteria for acute irritant-induced asthma or reactive airway dysfunction syndrome. One case exhibited bronchiolitis while, for the other six, the clinical picture was consistent with bronchitis. CONCLUSIONS: The studied cases indicate that the thermal decomposition products of CFC used in refrigerators may cause irritant-induced airway diseases of long duration.  (+info)

"Keep a low profile": pesticide residue, additives, and freon use in Australian tobacco manufacturing. (14/60)

OBJECTIVES: To review the Australian tobacco industry's knowledge of pesticide residue on Australian tobacco and its policies and practices on resisting calls by tobacco control advocates that consumers should be informed about pesticide residue as well as additives. METHODS: Review of previously internal industry documents relevant to pesticides and additives in Australian tobacco located from the Master Settlement Agreement websites. RESULTS: Between 1972 and 1994 Philip Morris Australia was aware that its leaf samples were often contaminated with pesticide residue, sometimes including organochlorine levels described by PM's European laboratories as being "extremely high". Consumers were not advised of the contamination nor products withdrawn. From 1981, the industry also resisted calls to declare fully the extent of use and long term safety data on all additives used in their products. They developed standard public responses that were evasive and misleading and, in 2000, implemented voluntary additive disclosure which allowed the companies to continue to avoid disclosure of any ingredient they deemed to be a trade secret. There was extensive use of ozone depleting freon in Australian tobacco manufacturing. Again, the industry kept this information away from consumers. CONCLUSIONS: Australian smokers are unable to make informed decisions about smoking because pesticide and additive disclosure remains voluntary. The Australian government should regulate tobacco to require full disclosure including information on the likely health consequences of inhaling pesticide and additive pyrolysis products.  (+info)

Reactive airways dysfunction syndrome caused by bromochlorodifluoromethane from fire extinguishers. (15/60)

Although the neurological and cardiovascular effects of Freons have been extensively described, the respiratory effects have been less well documented. We report four cases of occupational asthma following accidental exposure to bromochlorodifluoromethane (Halon 1211) due to release of the contents of a fire extinguisher. All subjects developed an irritative reaction of the upper airways and lower respiratory symptoms immediately after exposure. Non-specific bronchial hyperreactivity was present for at least two months in all subjects and was still present more than two years after exposure in one case. The diagnosis of reactive airways dysfunction syndrome can be adopted in at least three of these four cases.  (+info)

The kidney as a novel target tissue for protein adduct formation associated with metabolism of halothane and the candidate chlorofluorocarbon replacement 2,2-dichloro-1,1,1-trifluoroethane. (16/60)

Hydrochlorofluorocarbons (HCFCs) have been identified as chemical replacements of the widely used chlorofluorocarbons (CFCs) that are implicated in stratospheric ozone depletion. Many HCFCs are structural analogues of the anesthetic agent halothane and may follow a common pathway of biotransformation and formation of adducts to protein-centered and other cellular nucleophiles. Exposure of rats to a single dose of halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) or of the candidate CFC substitute HCFC 123 (2,2-dichloro-1,1,1-trifluoroethane) led to the formation of trifluoroacetylated protein adducts (CF3CO-proteins) not only in the liver, but also in the kidney as a novel target tissue for protein trifluoroacetylation. CF3CO-proteins in the kidney amounted to about 5% of those formed in the liver of the same animal. The amount of CF3CO-proteins formed within the kidney was roughly reflected by the capacity of metabolism of halothane or HCFC 123 by rat kidney microsomes in vitro which amounted to about 10% of that observed with liver microsomes. By immunohistochemistry, CF3CO-proteins in the kidney were mainly localized in the tubular segments of the cortex. In the liver, the density of CF3CO-proteins decreased from the central vein towards the portal triad. In vitro incubation of rat liver microsomes with halothane or HCFC 123 resulted in extensive formation of CF3CO-proteins and reproduced faithfully the pattern of liver CF3CO-proteins obtained in vivo. CF3CO-proteins generated in vitro were immunochemically not discernible from those generated in vivo. Glutathione (5 mM) and cysteine (5 mM) virtually abolished CF3CO-protein formation; the release of Br- from halothane and Cl- from HCFC 123 was reduced to much lesser a degree. S-Methyl-glutathione, N-acetyl-cysteine, methionine, and N-acetyl-methionine only slightly affected the formation of CF3CO-proteins or metabolism of either substrate. The data suggest that metabolism and concomitant CF3CO-protein formation of halothane or of candidate CFC replacements like HCFC 123 is not restricted to the liver but also takes place in the kidney. Furthermore, an in vitro system for CF3CO-protein formation has been developed and used to show that protein-centered and glutathione-centered nucleophilic sites compete for intermediates of metabolism of halothane or of HCFC 123.  (+info)