Reversible inhibition of Chlamydomonas flagellar surface motility. (57/808)

Chlamydomonas exhibits force transduction in association with its flagellar surface; this can be visualized by the saltatory movements of attached polystyrene microspheres. This flagellar surface motility has been quantitated by determining the percentage of attached microspheres in motion at the time of observation (60% in the case of control cells at 25 degrees C). A number of experimental treatments reversibly inhibit flagellar surface motility. These include an increase in sodium or potassium chloride concentration, a decrease in temperature, or a decrease in the free calcium concentration in the medium. Many of the conditions that result in inhibition of flagellar surface motility also result in an induction of flagellar resorption. Although both flagellar stability and flagellar surface motility are dependent on the availability of calcium, the two processes are separable; under appropriate conditions, flagellar surface motility can occur at normal levels on flagella that are resorbing. Inhibition of protein synthesis results in a gradual loss of both the binding of microspheres to the flagellum and the flagellar surface motility. After resumption of protein synthesis, both binding and movement return to control levels. The effect of the inhibition of protein synthesis is interpreted in terms of selective turnover of certain components within the intact flagellum, one or more of these components being necessary for the binding of the microspheres and their subsequent movement. If this turnover is inhibited by keeping the cells below 5 degrees C, the absence of protein synthesis no longer has an effect on microsphere attachment and motility, when measured immediately after warming the cells to 25 degrees C.  (+info)

Identification of a new polyphosphoinositide in plants, phosphatidylinositol 5-monophosphate (PtdIns5P), and its accumulation upon osmotic stress. (58/808)

Polyphosphoinositides play an important role in membrane trafficking and cell signalling. In plants, two PtdInsP isomers have been described, PtdIns3P and PtdIns4P. Here we report the identification of a third, PtdIns5P. Evidence is based on the conversion of the endogenous PtdInsP pool into PtdIns(4,5)P(2) by a specific PtdIns5P 4-OH kinase, and on in vivo (32)P-labelling studies coupled to HPLC head-group analysis. In Chlamydomonas, 3-8% of the PtdInsP pool was PtdIns5P, 10-15% was PtdIns3P and the rest was PtdIns4P. In seedlings of Vicia faba and suspension-cultured tomato cells, the level of PtdIns5P was about 18%, indicating that PtdIns5P is a general plant lipid that represents a significant proportion of the PtdInsP pool. Activating phospholipase C (PLC) signalling in Chlamydomonas cells with mastoparan increased the turnover of PtdIns(4,5)P(2) at the cost of PtdIns4P, but did not affect the level of PtdIns5P. This indicates that PtdIns(4,5)P(2) is synthesized from PtdIns4P rather than from PtdIns5P during PLC signalling. However, when cells were subjected to hyperosmotic stress, PtdIns5P levels rapidly increased, suggesting a role in osmotic-stress signalling. The potential pathways of PtdIns5P formation are discussed.  (+info)

An mRNA 3' processing site targets downstream sequences for rapid degradation in Chlamydomonas chloroplasts. (59/808)

In Chlamydomonas chloroplasts, atpB pre-mRNA matures through a two-step process. Initially, endonuclease cleavage occurs 8-10 nt downstream of the mature 3' end, which itself lies at the end of a stem-loop-forming inverted repeat (IR) sequence. This intermediate product is then trimmed by a 3' -->5' exonuclease activity. Although the initial endonucleolytic cleavage by definition generates two products, the downstream product of atpB pre-mRNA endonucleolytic processing cannot be detected, even transiently. This product thus appears to be highly unstable, and it can be hypothesized that specific mechanisms exist to prevent its accumulation. In experiments described here, the atpB 3' maturation site was placed upstream of reporter genes in vivo. Constructs containing both the IR and endonuclease cleavage site (ECS) did not accumulate the reporter gene mRNA, whereas constructs containing only the IR did accumulate the reporter mRNA. The ECS alone gave an intermediate result, suggesting that the IR and ECS act synergistically. Additional secondary structures were used to test whether 5' -->3' and/or 3' -->5' exonuclease activities mediated degradation. Because these structures did not prevent degradation, rapid endonucleolytic cleavages most likely trigger RNA destruction after ECS cleavage. On the other hand, fragments resulting from cleavage within the endogenous atpB mRNA could occasionally be detected as antisense transcripts of the adjacent reporter genes. Because endonuclease cleavages are also involved in the 5' maturation of chloroplast mRNAs, where only the downstream cleavage product accumulates, it appears that chloroplast endoribonuclease activities have evolved mechanisms to selectively stabilize different ECS products.  (+info)

Inhibitor effects during the cell cycle in Chlamydomonas reinhardtii. Determination of transition points in asynchronous cultures. (60/808)

A wide variety of inhibitors (drugs, antibiotics, and antimetabolites) will block cell division within an ongoing cell cycle in autotrophic cultures of Chlamydomonas reinhardtii. To determine when during the cell cycle a given inhibitor is effective in preventing cell division, a technique is described which does not rely on the use of synchronous cultures. The technique permits the measurement of transition points, the cell cycle stage at which the subsequent cell division becomes insensitive to the effects of an inhibitor. A map of transition points in the cell cycle reveals that they are grouped into two broad periods, the second and fourth quarters. In general, inhibitors which block organellar DNA, RNA, and protein synthesis have second-quarter transition points, while those which inhibit nuclear cytoplasmic macromolecular synthesis have fourth-quarter transition points. The specific grouping of these transition points into two periods suggests that the synthesis of organellar components is completed midway through the cell cycle and that the synthesis of nonorganellar components required for cell division is not completed until late in the cell cycle.  (+info)

Isolation, growth, ultrastructure, and metal tolerance of the green alga, Chlamydomonas acidophila (Chlorophyta). (61/808)

An acidophilic volvocine flagellate, Chlamydomonas acidophila (Volvocales) that was isolated from an acid lake, Katanuma, in Miyagi prefecture, Japan was studied for growth, ultrastructural characterization, and metal tolerance. Chlamydomonas acidophila is obligately photoautotrophic, and did not grow in the cultures containing acetate or citrate even in the light. The optimum pH for growth was 3.5-4.5. To characterize metal tolerance, the toxic effects of Cd, Co, Cu, and Zn on this alga were also studied. Effective metal concentrations, which limited the growth by 50%, EC50 were measured, after 72 h of static exposure. EC50s were 14.4 microM Cd2+, 81.3 microM Co2+, 141 microM Cu2+, and 1.16 mM Zn2+ for 72 h of exposure. Thus, this alga had stronger tolerance to these metals than other species in the genus Chlamydomonas.  (+info)

Two-dimensional gel electrophoresis of ribosomal proteins from streptomycin-sensitive and streptomycin-resistant mutants of Chlamydomonas reinhardi. (62/808)

Ribosomal proteins from three mutant strains of Chlamydomonas reinhardi were analysed and compared by one-dimensional and two-dimensional gel electrophoresis. One mutant was streptomycin-sensitive the other two were streptomycin-resistant, one with a Mendelian the other with a non-Mendelian pattern of inheritance. In the 30-S subunits of chloroplast ribosomes approximately 25 proteins are found and in the 50-S subunits 34 proteins. The 40-S subunits of cytoplasmic ribosomes contain about 31 proteins and the 60-S subunits 44 proteins. The molecular weights of most proteins in all subunits are in the range of 10 000 to 35 000. However, the 60-S subunits contain in addition a protein of molecular weight 50 000 and the 30-S subunits show 6-7 bands of molecular weights from 50 000 to 83 000. The proteins of the cytoplasmic 80-S ribosomes or of their subunits from all three mutants are electrophoretically identical. The proteins of the 70-S organellar ribosomes and both of their subunits show distinct differences between the three strains. Our results indicate that organellar ribosomal proteins are in part controlled by nuclear DNA and in part by organellar DNA.  (+info)

The outer dynein arm-docking complex: composition and characterization of a subunit (oda1) necessary for outer arm assembly. (63/808)

To learn more about how dyneins are targeted to specific sites in the flagellum, we have investigated a factor necessary for binding of outer arm dynein to the axonemal microtubules of Chlamydomonas. This factor, termed the outer dynein arm-docking complex (ODA-DC), previously was shown to be missing from axonemes of the outer dynein armless mutants oda1 and oda3. We have now partially purified the ODA-DC, determined that it contains equimolar amounts of M(r) approximately 105,000 and approximately 70,000 proteins plus a third protein of M(r) approximately 25,000, and found that it is associated with the isolated outer arm in a 1:1 molar ratio. We have cloned a full-length cDNA encoding the M(r) approximately 70,000 protein; the sequence predicts a 62.5-kDa protein with potential homologs in higher ciliated organisms, including humans. Sequencing of corresponding cDNA from strain oda1 revealed it has a mutation resulting in a stop codon just downstream of the initiator ATG; thus, it is unable to make the full-length M(r) approximately 70,000 protein. These results demonstrate that the ODA1 gene encodes the M(r) approximately 70,000 protein, and that the protein is essential for assembly of the ODA-DC and the outer dynein arm onto the doublet microtubule.  (+info)

The intraflagellar transport protein, IFT88, is essential for vertebrate photoreceptor assembly and maintenance. (64/808)

Approximately 10% of the photoreceptor outer segment (OS) is turned over each day, requiring large amounts of lipid and protein to be moved from the inner segment to the OS. Defects in intraphotoreceptor transport can lead to retinal degeneration and blindness. The transport mechanisms are unknown, but because the OS is a modified cilium, intraflagellar transport (IFT) is a candidate mechanism. IFT involves movement of large protein complexes along ciliary microtubules and is required for assembly and maintenance of cilia. We show that IFT particle proteins are localized to photoreceptor connecting cilia. We further find that mice with a mutation in the IFT particle protein gene, Tg737/IFT88, have abnormal OS development and retinal degeneration. Thus, IFT is important for assembly and maintenance of the vertebrate OS.  (+info)