Molecular characterization of rabies virus isolates from Mexico: implications for transmission dynamics and human risk. (25/1577)

Twenty-eight samples from humans and domestic and wild animals collected in Mexico between 1990 and 1995 were characterized by using anti-nucleoprotein monoclonal antibodies and limited sequence analysis of the nucleoprotein gene. The variants of rabies viruses identified in these samples were compared with other isolates from Mexico and the rest of the Americas to establish epidemiologic links between cases and outbreaks and to increase the understanding of rabies epidemiology in the Western Hemisphere. Antigenic and genetic diversity was found in all samples from dogs and dog-related cases, suggesting a long-term endemic situation with multiple, independent cycles of virus transmission. Two isolates from bobcats were antigenically and genetically homologous to the rabies variant circulating in the Arizona gray fox population, indicating a wider distribution of this variant than previously reported. Rabies isolates from skunks were unrelated to any variant analyzed in this study and represent a previously unrecognized cycle of rabies transmission in skunks in Baja California Sur. Two antigenic and genetic variants co-circulating in southern and eastern Mexico were found in viruses obtained from cases epidemiologically related to vampire bats. These results serve as a baseline for the better understanding of the molecular epidemiology of rabies in Mexico.  (+info)

Draculin, the anticoagulant factor in vampire bat saliva, is a tight-binding, noncompetitive inhibitor of activated factor X. (26/1577)

The kinetic mechanism of action of Draculin on activated Factor X (FXa) is established. Draculin inhibits activated Factor X within seconds of incubation at near equimolar concentration (2-6 times on molar basis). Fitting the data to the equation for a tight-binding inhibitor gives a value for K(i)(K(d)) = 14.8+/-1.5 nM. The formation of the Draculin-FXa complex can be explained by a two-step mechanism, where for the first, reversible step, k(on) = 1.117 (+/- 0.169, S.E.M.) x 10(6) M(-1)s(-1) and k(off) = 15.388 (+/- 1.672) x 10(-3) s(-1), while for the second, irreversible step, which is concentration-independent, k(2) = 0.072 s(-1). K(d) obtained from k(off)/k(on) = 13.76 nM. Lineweaver-Burk plot shows a noncompetitive behavior. This noncompetitive mode of inhibition of Draculin is supported by the observation that Draculin, at concentrations giving complete inhibition, does not impair binding of p-aminobenzamidine to FXa. Moreover, under the same conditions, Draculin induces <14% decrease of the fluorescence intensity of the p-aminobenzamidine-FXa complex. We conclude that Draculin is a noncompetitive, tight-binding inhibitor of FXa, a characteristic so far unique amongst natural FXa inhibitors.  (+info)

Facilitatory and inhibitory frequency tuning of combination-sensitive neurons in the primary auditory cortex of mustached bats. (27/1577)

Mustached bats, Pteronotus parnellii parnellii, emit echolocation pulses that consist of four harmonics with a fundamental consisting of a constant frequency (CF(1-4)) component followed by a short, frequency-modulated (FM(1-4)) component. During flight, the pulse fundamental frequency is systematically lowered by an amount proportional to the velocity of the bat relative to the background so that the Doppler-shifted echo CF(2) is maintained within a narrowband centered at approximately 61 kHz. In the primary auditory cortex, there is an expanded representation of 60.6- to 63. 0-kHz frequencies in the "Doppler-shifted CF processing" (DSCF) area where neurons show sharp, level-tolerant frequency tuning. More than 80% of DSCF neurons are facilitated by specific frequency combinations of approximately 25 kHz (BF(low)) and approximately 61 kHz (BF(high)). To examine the role of these neurons for fine frequency discrimination during echolocation, we measured the basic response parameters for facilitation to synthesized echolocation signals varied in frequency, intensity, and in their temporal structure. Excitatory response areas were determined by presenting single CF tones, facilitative curves were obtained by presenting paired CF tones. All neurons showing facilitation exhibit at least two facilitative response areas, one of broad spectral tuning to frequencies centered at BF(low) corresponding to a frequency in the lower half of the echolocation pulse FM(1) sweep and another of sharp tuning to frequencies centered at BF(high) corresponding to the CF(2) in the echo. Facilitative response areas for BF(high) are broadened by approximately 0.38 kHz at both the best amplitude and 50 dB above threshold response and show lower thresholds compared with the single-tone excitatory BF(high) response areas. An increase in the sensitivity of DSCF neurons would lead to target detection from farther away and/or for smaller targets than previously estimated on the basis of single-tone responses to BF(high). About 15% of DSCF neurons show oblique excitatory and facilitatory response areas at BF(high) so that the center frequency of the frequency-response function at any amplitude decreases with increasing stimulus amplitudes. DSCF neurons also have inhibitory response areas that either skirt or overlap both the excitatory and facilitatory response areas for BF(high) and sometimes for BF(low). Inhibition by a broad range of frequencies contributes to the observed sharpness of frequency tuning in these neurons. Recordings from orthogonal penetrations show that the best frequencies for facilitation as well as excitation do not change within a cortical column. There does not appear to be any systematic representation of facilitation ratios across the cortical surface of the DSCF area.  (+info)

Frequency organization and responses to complex sounds in the medial geniculate body of the mustached bat. (28/1577)

The auditory cortex of the mustached bat (Pteronotus parnellii) displays some of the most highly developed physiological and organizational features described in mammalian auditory cortex. This study examines response properties and organization in the medial geniculate body (MGB) that may contribute to these features of auditory cortex. About 25% of 427 auditory responses had simple frequency tuning with single excitatory tuning curves. The remainder displayed more complex frequency tuning using two-tone or noise stimuli. Most of these were combination-sensitive, responsive to combinations of different frequency bands within sonar or social vocalizations. They included FM-FM neurons, responsive to different harmonic elements of the frequency modulated (FM) sweep in the sonar signal, and H1-CF neurons, responsive to combinations of the bat's first sonar harmonic (H1) and a higher harmonic of the constant frequency (CF) sonar signal. Most combination-sensitive neurons (86%) showed facilitatory interactions. Neurons tuned to frequencies outside the biosonar range also displayed combination-sensitive responses, perhaps related to analyses of social vocalizations. Complex spectral responses were distributed throughout dorsal and ventral divisions of the MGB, forming a major feature of this bat's analysis of complex sounds. The auditory sector of the thalamic reticular nucleus also was dominated by complex spectral responses to sounds. The ventral division was organized tonotopically, based on best frequencies of singly tuned neurons and higher best frequencies of combination-sensitive neurons. Best frequencies were lowest ventrolaterally, increasing dorsally and then ventromedially. However, representations of frequencies associated with higher harmonics of the FM sonar signal were reduced greatly. Frequency organization in the dorsal division was not tonotopic; within the middle one-third of MGB, combination-sensitive responses to second and third harmonic CF sonar signals (60-63 and 90-94 kHz) occurred in adjacent regions. In the rostral one-third, combination-sensitive responses to second, third, and fourth harmonic FM frequency bands predominated. These FM-FM neurons, thought to be selective for delay between an emitted pulse and echo, showed some organization of delay selectivity. The organization of frequency sensitivity in the MGB suggests a major rewiring of the output of the central nucleus of the inferior colliculus, by which collicular neurons tuned to the bat's FM sonar signals mostly project to the dorsal, not the ventral, division. Because physiological differences between collicular and MGB neurons are minor, a major role of the tecto-thalamic projection in the mustached bat may be the reorganization of responses to provide for cortical representations of sonar target features.  (+info)

Scaling of echolocation call parameters in bats. (29/1577)

I investigated the scaling of echolocation call parameters (frequency, duration and repetition rate) in bats in a functional context. Low-duty-cycle bats operate with search phase cycles of usually less than 20 %. They process echoes in the time domain and are therefore intolerant of pulse-echo overlap. High-duty-cycle (>30 %) species use Doppler shift compensation, and they separate pulse and echo in the frequency domain. Call frequency scales negatively with body mass in at least five bat families. Pulse duration scales positively with mass in low-duty-cycle quasi-constant-frequency (QCF) species because the large aerial-hawking species that emit these signals fly fast in open habitats. They therefore detect distant targets and experience pulse-echo overlap later than do smaller bats. Pulse duration also scales positively with mass in the Hipposideridae, which show at least partial Doppler shift compensation. Pulse repetition rate corresponds closely with wingbeat frequency in QCF bat species that fly relatively slowly. Larger, fast-flying species often skip pulses when detecting distant targets. There is probably a trade-off between call intensity and repetition rate because 'whispering' bats (and hipposiderids) produce several calls per predicted wingbeat and because batches of calls are emitted per wingbeat during terminal buzzes. Severe atmospheric attenuation at high frequencies limits the range of high-frequency calls. Low-duty-cycle bats that call at high frequencies must therefore use short pulses to avoid pulse-echo overlap. Rhinolophids escape this constraint by Doppler shift compensation and, importantly, can exploit advantages associated with the emission of both high-frequency and long-duration calls. Low frequencies are unsuited for the detection of small prey, and low repetition rates may limit prey detection rates. Echolocation parameters may therefore constrain maximum body size in aerial-hawking bats.  (+info)

Estimating power curves of flying vertebrates. (30/1577)

The power required for flight in any flying animal is a function of flight speed. The power curve that describes this function has become an icon of studies of flight mechanics and physiology because it encapsulates the accessible animal's flight performance. The mechanical or aerodynamic power curve, describing the increase in kinetic energy of the air due to the passage of the bird, is necessarily U-shaped, for aerodynamic reasons, and can be estimated adequately by lifting-line theory. Predictions from this and related models agree well with measured mechanical work in flight and with results from flow visualization experiments. The total or metabolic power curve also includes energy released by the animal as heat, and is more variable in shape. These curves may be J-shaped for smaller birds and bats, but are difficult to predict theoretically owing to uncertainty about internal physiological processes and the efficiency of the flight muscles. The limitations of some existing models aiming to predict metabolic power curves are considered. The metabolic power curve can be measured for birds or bats flying in wind tunnels at controlled speeds. Simultaneous determination in European starlings Sturnus vulgaris of oxygen uptake, total metabolic rate (using labelled isotopes), aerodynamic power output and heat released (using digital video thermography) enable power curves to be determined with confidence; flight muscle efficiency is surprisingly low (averaging 15-18 %) and increases moderately with flight speed, so that the metabolic power curve is shallower than predicted by models. Accurate knowledge of the power curve is essential since extensive predictions of flight behaviour have been based upon it. The hypothesis that the power curve may not in fact exist, in the sense that the cost of flight may not be perceived by a bird as a continuous smooth function of air speed, is advanced but has not yet formally been tested. This hypothesis is considered together with evidence from variation in flight behaviour, wingbeat kinematics and flight gait with speed. Possible constraints on flight behaviour can be modelled by the power curves: these include the effect of a maximum power output and a constraint on maximum speed determined by downstroke wingbeat geometry and the relationship between thrust and lift.  (+info)

Temporal dynamics of acoustic stimuli enhance amplitude tuning of inferior colliculus neurons. (31/1577)

Sounds in real-world situations seldom occur in isolation. In spite of this, most studies in the auditory system have employed sounds that serve to isolate physiological responses, namely, at low rates of stimulation. It is unclear, however, whether the basic response properties of a neuron derived thereof, such as its amplitude and frequency selectivities, are applicable to real-world situations where sounds occur in rapid succession. In the present study, we investigated one of the basic response properties of neurons in the bat inferior colliculus (IC), i.e., the rate-level function, to tone pulses in three different configurations: individual tone pulses of constant amplitude at different rates of stimulation, random-amplitude pulse trains, and dynamic-amplitude-modulated pulse trains the temporal pattern of which was similar to what bats encounter in a behavioral context. We reported that for the majority of IC neurons, amplitude selectivity to tone pulses was dependent on the rate of stimulation. In general, the selectivity was greater at high rates or in a behavioral context than at low rates. For a small population of IC neurons, however, the rate of stimulation had little or no effect on their rate-level functions. Thus for IC neurons, responses to sounds presented at low rates may or may not be used to predict the responses to the same stimuli presented at high rates or in a behavioral context. The possible neural mechanisms underlying the rate-dependent effects are discussed.  (+info)

Soaring and non-soaring bats of the family pteropodidae (flying foxes, Pteropus spp.): wing morphology and flight performance. (32/1577)

On oceanic islands, some large diurnal megachiropteran bat species (flying foxes; Pteropus spp.) frequently use thermal or slope soaring during foraging flights to save energy. We compared the flight morphology and gliding/soaring performance of soaring versus non-soaring Pteropus species, one pair on American Samoa and one pair on the Comoro Islands, and two other soaring/flap-gliding species and one non-soaring species. We predicted that the soaring species should have a lower body mass, longer wings and, hence, lower wing loadings than those species that use mainly flapping flight. This would give a lower sinking speed during gliding, a higher glide ratio, and enable the bats to make tighter turns with lower sinking speeds than in the non-soaring species. We theoretically calculated the gliding and circling performances of both the soaring and non-soaring species. Our results show that there are tendencies towards longer wings and lower wing loadings in relation to body size in the gliding/soaring flying foxes than in the non-soaring ones. In the species-pair comparison of the soaring and non-soaring species on American Samoa and the Comoro Islands, the soarers on both islands turn out to have lower wing loadings than their non-soaring partners in spite of opposite size differences among the pairs. These characteristics are in accordance with our hypothesis on morphological adaptations. Most differences are, however, only significant at a level of P<0.1, which may be due to the small sample size, but overlap also occurs. Therefore, we must conclude that wing morphology does not seem to be a limiting factor preventing the non-soarers from soaring. Instead, diurnality in the soaring species seems to be the ultimate determinant of soaring behaviour. The morphological differences cause visible differences in soaring and gliding performance. The glider/soarers turn out to have lower minimum sinking speeds, lower best glide speeds and smaller turning radii than the non-soarers. When the wing measurements and soaring performance are normalized to a body mass of 0.5 kg for all species, the minimum sinking speed becomes significantly lower (P<0.05) in the three soaring and the one flap-gliding species (0.63 m s(-)(1)) than in the three non-soaring species (0.69 m s(-)(1)). Interestingly, the zones in the diagrams for the glide polars and circling envelopes of these similar-sized bats become displaced for the glider/soarers versus the non-soarers. The glide polars overlap slightly only at the gliding speeds appropriate for these bats, whereas the circling envelopes do not overlap at the appropriate bank angles and turning radii. This points towards adaptations for better gliding/soaring performance in the soaring and gliding species.  (+info)