Rapid cold-hardening increases the freezing tolerance of the Antarctic midge Belgica antarctica. (41/233)

Rapid cold-hardening (RCH) is well known to increase the tolerance of chilling or cold shock in a diverse array of invertebrate systems at both organismal and cellular levels. Here, we report a novel role for RCH by showing that RCH also increases freezing tolerance in an Antarctic midge, Belgica antarctica (Diptera, Chironomidae). The RCH response of B. antarctica was investigated under two distinct physiological states: summer acclimatized and cold acclimated. Summer-acclimatized larvae were less cold tolerant, as indicated by low survival following exposure to -10 degrees C for 24 h; by contrast, nearly all cold-acclimated larvae survived -10 degrees C, and a significant number could survive -15 degrees C. Cold-acclimated larvae had higher supercooling points than summer larvae. To evaluate the RCH response in summer-acclimatized midges, larvae and adults, maintained at 4 degrees C, were transferred to -5 degrees C for 1 h prior to exposures to -10, -15 or -20 degrees C. RCH significantly increased survival of summer-acclimatized larvae frozen at -10 degrees C for 1 h compared with larvae receiving no cold-hardening treatment, but adults, which live for only a week or so in the austral summer, lacked the capacity for RCH. In cold-acclimated larvae, RCH significantly increased freeze tolerance to both -15 and -20 degrees C. Similarly, RCH significantly increased cellular survival of fat body, Malpighian tubules and gut tissue from cold-acclimated larvae frozen at -20 degrees C for 24 h. These results indicate that RCH not only protects against non-freezing injury but also increases freeze tolerance.  (+info)

Redestribution of Chironomus salinarius (Diptera: Chironomidae), nuisance midges that emerged in brackish water of Jinhae-man (Bay), Kyongsangnam-do, Korea. (42/233)

Huge numbers of non-biting midges emerged from brackish water which were made at the harbor construction field in Jinhae City, Kyongsangnam-do, Korea in late summer in 2005, and caused a serious nuisance to villagers. The midges were collected and identified as Chironomus salinarius (Kieffer, 1921). Although this species was recorded in Korea for the first time in 1998, the morphological descriptions were so brief and simple. A full redescription is made with detailed illustrations for ecological and control workers of this nuisance midge.  (+info)

A novel Ded1-like RNA helicase interacts with the Y-box protein ctYB-1 in nuclear mRNP particles and in polysomes. (43/233)

We have characterized a novel mRNA-binding protein, designated hrp84, in the dipteran Chironomus tentans and identified it as a DEAD-box RNA helicase. The protein contains the typical helicase core domain, a glycine-rich C-terminal part and a putative nuclear export signal in the N terminus. The protein belongs to the Ded1 subgroup of DEAD-box helicases, which is highly conserved from yeast (Ded1p) to mammals (DDX3). In tissue culture cells, hrp84 is present both in the nucleus and cytoplasm and, as shown by in vivo UV cross-linking, is bound to mRNA in both compartments. Immunoprecipitation experiments revealed that hpr84 is associated with the C. tentans homologue (ctYB-1) of the vertebrate Y-box protein YB-1 both in the nucleus and cytoplasm, and the two proteins also appear together in polysomes. The interaction is likely to be direct as shown by in vitro binding of purified components. We conclude that the mRNA-bound hrp84.ctYB-1 complex is formed in the nucleus and is translocated with mRNA into the cytoplasm and further into polysomes. As both Ded1 and YB-1 are known to regulate the initiation of translation, we propose that the RNA helicase-Y-box protein complex affects the efficiency of mRNA translation, presumably by modulating the conformation of the mRNP template.  (+info)

Allergy to chironomid larvae (red migde larvae) in non professional handlers of fish food. (44/233)

Chironomids are insects which inhabit wetlands. In countries such as Sudan, The United States. Egypt and Japan they are the cause of serious environmental allergy. In Europe, and particularly in Spain, allergy to Chironomids is infrequent and has only been described in patients who handle Chironomid larvae which form part of certain fish foods. MATERIALS AND METHODS: We report a case of hypersensitivity to the Chironomid Midge (Chironomus thummi thummi) in a 23-year-old patient who on two occasions, after being in contact with fishfood, suffered rash, rhinoconjunctivitis, dyspnea and dysphagia. A Prick test was carried out with the habitual pneumoallergens, Chironomid Midge extract (PBS: 1.3 mg/ml), Common Mosquito (Culex pipiens), Squid, Mussel, Prawn and Anisakis. Conjunctival provocation was also carried out with Chironomid Midge extract; detection of specific IgE for Chironomid Midge, Common Mosquito (Aedes comunis), Mussel, Squid, Shrimp, Anisakis, house dust and house mites by means of the CAP technique; detection of IgE by means of ELISA in response to Chironomid Midge, Aedes mosquito, Squid, Prawn, Mussel and Anisakis; ELISA-inhibition and Immunoblott-inhibition. RESULTS: The positive results of the cutaneous tests, the detection of specific IgE and conjunctival provocation confirmed the existence of an IgE-mediated mechanism. In our patient, the in vitro techniques demonstrated cross reactivity with the Common Mosquito. CONCLUSIONS: We report on a patient with a case history of rhinoconjunctivitis, rash, dyspnea, and dysphagia after handling fish food. The etiological agent was the Chironomid larvae. The sensitization of our patient has been demonstrated by means of in vivo and in vitro techniques.  (+info)

Continuous up-regulation of heat shock proteins in larvae, but not adults, of a polar insect. (45/233)

Antarctica's terrestrial environment is a challenge to which very few animals have adapted. The largest, free-living animal to inhabit the continent year-round is a flightless midge, Belgica antarctica. Larval midges survive the lengthy austral winter encased in ice, and when the ice melts in summer, the larvae complete their 2-yr life cycle, and the wingless adults form mating aggregations while subjected to surprisingly high substrate temperatures. Here we report a dichotomy in survival strategies exploited by this insect at different stages of its life cycle. Larvae constitutively up-regulate their heat shock proteins (small hsp, hsp70, and hsp90) and maintain a high inherent tolerance to temperature stress. High or low temperature exposure does not further up-regulate these genes nor does it further enhance thermotolerance. Such "preemptive" synthesis of hsps is sufficient to prevent irreversible protein aggregation in response to a variety of common environmental stresses. Conversely, adults exhibit no constitutive up-regulation of their hsps and have a lower intrinsic tolerance to high temperatures, but their hsps can be thermally activated, resulting in enhanced thermotolerance. Thus, the midge larvae, but not the adults, have adopted the unusual strategy of expressing hsps continuously, possibly to facilitate proper protein folding in a cold habitat that is more thermally stable than that of the adults but a habitat subjected frequently to freeze-thaw episodes and bouts of pH, anoxic, and osmotic stress.  (+info)

Sub-lethal and chronic salinity tolerances of three freshwater insects: Cloeon sp. and Centroptilum sp. (Ephemeroptera: Baetidae) and Chironomus sp. (Diptera: Chironomidae). (46/233)

Increased salinity in rivers and streams is a serious environmental concern, and in Australia there is growing information about the acute tolerances to salinity for freshwater macroinvertebrates, but much less information about chronic and sub-lethal tolerances. The effects of increased salinity on the growth and survival of two mayflies, Cloeon sp. and Centroptilum sp. and one midge Chironomus sp. are reported. In both mayfly species survival was variable. Complete mortality was observed in salinities with electrical conductivity of 10 mS cm(-1) and higher. Salinities causing chronic mortality in mayflies were measured as 21-day LC50, and ranged from 0.90 to 2.7 mS cm(-1). Growth rates were not significantly different between treatments. In Chironomus, salinity affected the mean number emerging as flying adults as well as the time to emergence. An inverted 'U' shape response was observed for percentage emergence, with the greatest numbers emerging at intermediate salinities (0.65-5.0 mS cm(-1)). No emergence occurred at salinities of 20 mS cm(-1) and higher. Time to emergence was delayed by 15-88% with increased salinity, however the size of emerged adults was the same for all treatments. Growth rates were reduced with increased salinity, showing a slow, steady reduction up to 10 mS cm(-1) then a steep decline between 10 and 15 mS cm(-1). The implications of altered growth rates and changes in developmental times are discussed. This study illustrates the variability in responses to increased salinity, and highlights the need to continue studying sub-lethal and chronic exposures in a range of freshwater invertebrates, in order to predict impacts of salinisation on freshwater biodiversity.  (+info)

Predators accelerate nutrient cycling in a bromeliad ecosystem. (47/233)

Conventional ecological theory predicts that predators affect nutrient cycling by decreasing the abundance or activity of prey. By using a predator-detritivore-detritus food chain in bromeliads, we show that predators can increase nutrient cycling by a previously undescribed, but broadly applicable, mechanism: reducing nutrient export by prey emigration. Contrary to expectations, predation on detritivores increases detrital nitrogen uptake by bromeliads. Predation reduces detritivore emergence and hence export of nitrogen from the system. Detritivores therefore benefit their host plant, but only when predators are present. More generally, our results show that predator loss or extinction can dramatically and unexpectedly affect ecosystem functioning.  (+info)

Passive internal dispersal of insect larvae by migratory birds. (48/233)

It has long been assumed that the resistant eggs of many zooplankton are able to survive passage through the gut of migratory waterbirds, thus facilitating their dispersal between isolated aquatic habitats. We present the first evidence that such passive internal transport within birds may be relevant for insect populations. In three out of six faecal samples from black-tailed Godwits on autumn migration in southwest Spain, we found larvae of the chironomid Chironomus salinarius which had survived gut passage. Although adult chironomids can fly, they are likely to disperse greater distances when transported as larvae via birds. In insects with discrete generations, such passive transport also enables colonization of new habitats at times when flight by adults is not an option.  (+info)