Rac-GAP alpha-chimerin regulates motor-circuit formation as a key mediator of EphrinB3/EphA4 forward signaling. (9/37)

The ephrin/Eph system plays a central role in neuronal circuit formation; however, its downstream effectors are poorly understood. Here we show that alpha-chimerin Rac GTPase-activating protein mediates ephrinB3/EphA4 forward signaling. We discovered a spontaneous mouse mutation, miffy (mfy), which results in a rabbit-like hopping gait, impaired corticospinal axon guidance, and abnormal spinal central pattern generators. Using positional cloning, transgene rescue, and gene targeting, we demonstrated that loss of alpha-chimerin leads to mfy phenotypes similar to those of EphA4(-/-) and ephrinB3(-/-) mice. alpha-chimerin interacts with EphA4 and, in response to ephrinB3/EphA4 signaling, inactivates Rac, which is a positive regulator of process outgrowth. Moreover, downregulation of alpha-chimerin suppresses ephrinB3-induced growth cone collapse in cultured neurons. Our findings indicate that ephrinB3/EphA4 signaling prevents growth cone extension in motor circuit formation via alpha-chimerin-induced inactivation of Rac. They also highlight the role of a Rho family GTPase-activating protein as a key mediator of ephrin/Eph signaling.  (+info)

There's more than one way to skin a chimaerin. (10/37)

In two manuscripts published in Neuron (Beg et al. and Wegmeyer et al.) and one published in Cell (Iwasato et al.), investigators have found that a particular GAP, alpha-chimaerin, is required in vivo for ephrinB3/EphA4-dependent motor circuit formation.  (+info)

EphA4-dependent axon guidance is mediated by the RacGAP alpha2-chimaerin. (11/37)

Neuronal network formation in the developing nervous system is dependent on the accurate navigation of nerve cell axons and dendrites, which is controlled by attractive and repulsive guidance cues. Ephrins and their cognate Eph receptors mediate many repulsive axonal guidance decisions by intercellular interactions resulting in growth cone collapse and axon retraction of the Eph-presenting neuron. We show that the Rac-specific GTPase-activating protein alpha2-chimaerin binds activated EphA4 and mediates EphA4-triggered axonal growth cone collapse. alpha-Chimaerin mutant mice display a phenotype similar to that of EphA4 mutant mice, including aberrant midline axon guidance and defective spinal cord central pattern generator activity. Our results reveal an alpha-chimaerin-dependent signaling pathway downstream of EphA4, which is essential for axon guidance decisions and neuronal circuit formation in vivo.  (+info)

alpha2-Chimaerin is an essential EphA4 effector in the assembly of neuronal locomotor circuits. (12/37)

The assembly of neuronal networks during development requires tightly controlled cell-cell interactions. Multiple cell surface receptors that control axon guidance and synapse maturation have been identified. However, the signaling mechanisms downstream of these receptors have remained unclear. Receptor signals might be transmitted through dedicated signaling lines defined by specific effector proteins. Alternatively, a single cell surface receptor might couple to multiple effectors with overlapping functions. We identified the neuronal RacGAP alpha2-chimaerin as an effector for the receptor tyrosine kinase EphA4. alpha2-Chimaerin interacts with activated EphA4 and is required for ephrin-induced growth cone collapse in cortical neurons. alpha2-Chimaerin mutant mice exhibit a rabbit-like hopping gait with synchronous hindlimb movements that phenocopies mice lacking EphA4 kinase activity. Anatomical and functional analyses of corticospinal and spinal interneuron projections reveal that loss of alpha2-chimaerin results in impairment of EphA4 signaling in vivo. These findings identify alpha2-chimaerin as an indispensable effector for EphA4 in cortical and spinal motor circuits.  (+info)

Alpha2-chimaerin interacts with EphA4 and regulates EphA4-dependent growth cone collapse. (13/37)

EphA4-dependent growth cone collapse requires reorganization of actin cytoskeleton through coordinated activation of Rho family GTPases. Whereas various guanine exchange factors have recently been identified to be involved in EphA4-mediated regulation of Rho GTPases and growth cone collapse, the functional roles of GTPase-activating proteins in the process are largely unknown. Here we report that EphA4 interacts with alpha2-chimaerin through its Src homology 2 domain. Activated EphA4 induces a rapid increase of tyrosine phosphorylation of alpha2-chimaerin and enhances its GTPase-activating protein activity toward Rac1. More importantly, alpha2-chimaerin regulates the action of EphA4 in growth cone collapse through modulation of Rac1 activity. Our findings have therefore identified a new alpha2-chimaerin-dependent signaling mechanism through which EphA4 transduces its signals to the actin cytoskeleton and modulates growth cone morphology.  (+info)

Nck adaptor proteins control the organization of neuronal circuits important for walking. (14/37)

The intracellular signaling targets used by mammalian axon guidance receptors to organize the nervous system in vivo are unclear. The Nck1 and Nck2 SH2/SH3 adaptors (collectively Nck) can couple phosphotyrosine (pTyr) signals to reorganization of the actin cytoskeleton and are therefore candidates for linking guidance cues to the regulatory machinery of the cytoskeleton. We find that selective inactivation of Nck in the murine nervous system causes a hopping gait and a defect in the spinal central pattern generator, which is characterized by synchronous firing of bilateral ventral motor neurons. Nck-deficient mice also show abnormal projections of corticospinal tract axons and defective development of the posterior tract of the anterior commissure. These phenotypes are consistent with a role for Nck in signaling initiated by different classes of guidance receptors, including the EphA4 receptor tyrosine kinase. Our data indicate that Nck adaptors couple pTyr guidance signals to cytoskeletal events required for the ipsilateral projections of spinal cord neurons and thus for normal limb movement.  (+info)

Role of chimaerins, a group of Rac-specific GTPase activating proteins, in T-cell receptor signaling. (15/37)

 (+info)

Human CHN1 mutations hyperactivate alpha2-chimaerin and cause Duane's retraction syndrome. (16/37)

 (+info)