Identification of the canarypox virus thymidine kinase gene and insertion of foreign genes. (73/14041)

We mapped the canarypox virus (CaPV) thymidine kinase (TK) gene within a 5.8-kbp XbaI fragment of the genome by Southern blotting using the fowlpox virus (FPV) TK gene as a probe. Nucleotide sequence analysis of the fragment revealed seven open reading frames (ORFs) showing gene organization similar to that of FPV. The TK gene contained in this region had an ORF of 179 amino acids encoding a polypeptide with a putative molecular mass of 20.0 kDa. An A/T-rich region and a transcription termination signal, TTTTTAT, were found upstream and at the end of the ORF, which is consistent with poxvirus early gene regulation. The consensus sequence of the late promoter TAAAT also overlapped with the initiation codon of the ORF. The amino acid sequence similarity between the TK genes of CaPV and FPV, avipoxviruses, was 64.2%, which was lower than the similarities between vaccinia and variola orthopoxviruses (97.2%) and between Shope fibroma and myxoma leporipoxviruses (82.6%). However, the monophyly of avian clades of CaPV and FPV was supported by phylogenetic analysis. We then inserted the genes encoding lacZ, luciferase (luci), and envelope of human T-lymphotropic virus type 1 (HTLV-1 env) into the TK gene of CaPV to evaluate its suitability as an expression vector. The recombinant viruses obtained were unstable, although the foreign genes were expressed efficiently in the mammalian cells infected with the viruses.  (+info)

Cholinergic and GABAergic inputs drive patterned spontaneous motoneuron activity before target contact. (74/14041)

Patterned spontaneous electrical activity has been demonstrated in a number of developing neural circuits and has been proposed to play a role in refining connectivity once axons reach their targets. Using an isolated spinal cord preparation, we have found that chick lumbosacral motor axons exhibit highly regular bursts of activity from embryonic day 4 (E4) (stage 24-25), shortly after they exit the spinal cord and while still en route toward their target muscles. Similar bursts could be evoked by stimulating descending pathways at cervical or thoracic levels. Unlike older embryonic cord circuits, the major excitatory transmitter driving activity was not glutamate but acetylcholine, acting primarily though nicotinic non-alpha7 receptors. The circuit driving bursting was surprisingly robust and plastic, because bursting was only transiently blocked by cholinergic antagonists, and following recovery, was now driven by GABAergic inputs. Permanent blockade of spontaneous activity was only achieved by a combination of cholinergic antagonists and bicuculline, a GABAA antagonist. The early occurrence of patterned motor activity suggests that it could be playing a role in either peripheral pathfinding or spinal cord circuit formation and maturation. Finally, the characteristic differences in burst parameters already evident between different motoneuron pools at E4 would require that the combination of transcription factors responsible for specifying pool identity to have acted even earlier.  (+info)

Human erythropoietin induces a pro-angiogenic phenotype in cultured endothelial cells and stimulates neovascularization in vivo. (75/14041)

Hematopoietic and endothelial cell lineages share common progenitors. Accordingly, cytokines formerly thought to be specific for the hematopoietic system have been shown to affect several functions in endothelial cells, including angiogenesis. In this study, we investigated the angiogenic potential of erythropoietin (Epo), the main hormone regulating proliferation, differentiation, and survival of erythroid cells. Epo receptors (EpoRs) have been identified in the human EA.hy926 endothelial cell line by Western blot analysis. Also, recombinant human Epo (rHuEpo) stimulates Janus Kinase-2 (JAK-2) phosphorylation, cell proliferation, and matrix metalloproteinase-2 (MMP-2) production in EA.hy926 cells and significantly enhances their differentiation into vascular structures when seeded on Matrigel. In vivo, rHuEpo induces a potent angiogenic response in the chick embryo chorioallantoic membrane (CAM). Accordingly, endothelial cells of the CAM vasculature express EpoRs, as shown by immunostaining with an anti-EpoR antibody. The angiogenic response of CAM blood vessels to rHuEpo was comparable to that elicited by the prototypic angiogenic cytokine basic fibroblast growth factor (FGF2), it occurred in the absence of a significant mononuclear cell infiltrate, and it was not mimicked by endothelin-1 (ET-1) treatment. Taken together, these data demonstrate the ability of Epo to interact directly with endothelial cells and to elicit an angiogenic response in vitro and in vivo and thus act as a bona fide direct angiogenic factor.  (+info)

Ovalbumin in developing chicken eggs migrates from egg white to embryonic organs while changing its conformation and thermal stability. (76/14041)

Ovalbumin was detected in developing chicken eggs. The large majority of these ovalbumin molecules was found to be in a heat-stable form reminiscent of S-ovalbumin. About 83 and 90% of the ovalbumin population was in a heat-stable form in day 14 or stage 40 amniotic fluid and day 18 or stage 44 egg yolk, respectively, whereas ovalbumin in newly deposited eggs was in the heat-unstable, native form. Purified preparations of stable ovalbumin from egg white and amniotic fluid showed a less ordered configuration than native ovalbumin, as analyzed by circular dichroism and differential scanning calorimetry. In addition, mass spectrometric analysis exhibited distinct size microheterogeneity between the stable and native forms of ovalbumin. Immunohisotochemical study revealed that ovalbumin was present in the central nervous system and other embryonic organs. These results indicated that egg white ovalbumin migrates into the developing embryo while changing its higher order structure.  (+info)

Del1 induces integrin signaling and angiogenesis by ligation of alphaVbeta3. (77/14041)

Del1 is a novel extracellular matrix protein encoding three Notch-like epidermal growth factor repeats, an RGD motif, and two discoidin domains. Del1 is expressed in an endothelial cell-restricted pattern during early development. In studies reported here, recombinant baculovirus Del1 protein was shown to promote alphavbeta3-dependent endothelial cell attachment and migration. Attachment of endothelial cells to Del1 was associated with clustering of alphavbeta3, the formation of focal complexes, and recruitment of talin and vinculin into these complexes. These events were shown to be associated with phosphorylation of proteins in the focal complexes, including the time-dependent phosphorylation of p125(FAK), MAPK, and Shc. When recombinant Del1 was evaluated in an in ovo chick chorioallantoic membrane assay, it was found to have potent angiogenic activity. This angiogenic activity was inhibited by a monoclonal antibody directed against alphavbeta3, and an RAD mutant Del1 protein was inactive. Thus Del1 provides a unique autocrine angiogenic pathway for the embryonic endothelium, and this function is mediated in part by productive ligation of integrin alphavbeta3.  (+info)

A silencer element in the regulatory region of glutamine synthetase controls cell type-specific repression of gene induction by glucocorticoids. (78/14041)

Glutamine synthetase is a key enzyme in the recycling of the neurotransmitter glutamate. Expression of this enzyme is regulated by glucocorticoids, which induce a high level of glutamine synthetase in neural but not in various non-neural tissues. This is despite the fact that non-neural cells express functional glucocorticoid receptor molecules capable of inducing other target genes. Sequencing and functional analysis of the upstream region of the glutamine synthetase gene identified, 5' to the glucocorticoid response element (GRE), a 21-base pair glutamine synthetase silencer element (GSSE), which showed considerable homology with the neural restrictive silencer element NRSE. The GSSE was able to markedly repress the induction of gene transcription by glucocorticoids in non-neural cells and in embryonic neural retina. The repressive activity of the GSSE could be conferred on a heterologous GRE promoter and was orientation- and position-independent with respect to the transcriptional start site, but appeared to depend on a location proximal to the GRE. Gel-shift assays revealed that non-neural cells and cells of early embryonic retina contain a high level of GSSE binding activity and that this level declines progressively with age. Our results suggest that the GSSE might be involved in the restriction of glutamine synthetase induction by glucocorticoids to differentiated neural tissues.  (+info)

Selection of RNA replicons capable of persistent noncytopathic replication in mammalian cells. (79/14041)

The natural life cycle of alphaviruses, a group of plus-strand RNA viruses, involves transmission to vertebrate hosts via mosquitoes. Chronic infections are established in mosquitoes (and usually in mosquito cell cultures), but infection of susceptible vertebrate cells typically results in rapid shutoff of host mRNA translation and cell death. Using engineered Sindbis virus RNA replicons expressing puromycin acetyltransferase as a dominant selectable marker, we identified mutations allowing persistent, noncytopathic replication in BHK-21 cells. Two of these adaptive mutations involved single-amino-acid substitutions in the C-terminal portion of nsP2, the viral helicase-protease. At one of these loci, nsP2 position 726, numerous substitution mutations were created and characterized in the context of RNA replicons and infectious virus. Our results suggest a direct correlation between the level of viral RNA replication and cytopathogenicity. This work also provides a series of alphavirus replicons for noncytopathic gene expression studies (E. V. Agapov, I. Frolov, B. D. Lindenbach, B. M. Pragai, S. Schlesinger, and C. M. Rice, Proc. Natl. Acad. Sci. USA 95:12989-12994, 1998) and a general strategy for selecting RNA viral mutants adapted to different cellular environments.  (+info)

F-Spondin, expressed in somite regions avoided by neural crest cells, mediates inhibition of distinct somite domains to neural crest migration. (80/14041)

Neural crest (NC) cells migrate exclusively into the rostral half of each sclerotome, where they avoid the dermomyotome and the paranotochordal sclerotome. F-spondin is expressed in these inhibitory regions and throughout the caudal halves. In vitro bioassays of NC spreading on substrates of rostral or caudal epithelial-half somites (RS or CS, respectively) revealed that NC cells adopt on RS a fibroblastic morphology, whereas on CS they fail to flatten. F-spondin inhibited flattening of NC cells on RS. Conversely, F-spondin antibodies prevented rounding up of NC cells on CS. Addition of F-spondin to trunk explants inhibited NC migration into the sclerotome, and treatment of embryos with anti-F-spondin antibodies yielded migration into otherwise inhibitory sites. Thus, somite-derived F-spondin is an inhibitory signal involved in patterning the segmental migration of NC cells and their topographical segregation within the RS.  (+info)