Study of the cell biology and biochemistry of cherubism. (1/25)

AIMS: To establish whether the multinucleate cells in lesions of patients with cherubism are also osteoclasts and if this is the case whether they were responsive to calcitonin; to carry out cytogenetic studies on two members of the same family affected by cherubism in an attempt to identify any major chromosomal defects; and to perform an in-depth modern biochemical study of four children in the same family. SUBJECTS AND METHODS: Four related children with cherubism were studied. Tissue taken from one of the children at elective decompression of an optic nerve was submitted to in vitro bone resorption studies. Cytogenetic studies were done on two of the children and biochemical studies on all four. RESULTS: The multinucleate cells in the cherubic lesions were shown to be osteoclasts since they synthesised tartrate resistant acid phosphatase, expressed the vitronectin receptor, and resorbed bone. Bone resorption by the cultured multinucleate cells was significantly inhibited by calcitonin. High resolution cytogenetic studies failed to detect any chromosomal abnormalities in two children with cherubism. The biochemistry profile of all four children with cherubism showed that serum calcium, parathyroid hormone, parathyroid related hormone, calcitonin, and alkaline phosphatase were within normal levels. Urine analysis of pyridinium and deoxypyridinium cross links, hydroxyproline, and calcium in relation to urine creatinine were measured to assess bone resorption in these children, and the values were at the upper end of the normal range in all four. CONCLUSIONS: Further studies are required to determine whether calcitonin treatment will control this grossly deforming disease until the time when the physiological changes that occur at puberty rectify the pathology. It is not recommended that biochemical markers of bone resorption are used in isolation to monitor the activity of cherubism in individuals because the results are based on a small number of children and because of reports of marked interindividual variation in the levels of these markers, particularly in children.  (+info)

The gene for cherubism maps to chromosome 4p16.3. (2/25)

Cherubism is a rare familial disease of childhood characterized by proliferative lesions within the mandible and maxilla that lead to prominence of the lower face and an appearance reminiscent of the cherubs portrayed in Renaissance art. Resolution of these bony abnormalities is often observed after puberty. Many cases are inherited in an autosomal dominant fashion, although several cases without a family history have been reported. Using two families with clinically, radiologically, and/or histologically proved cherubism, we have performed a genomewide linkage search and have localized the gene to chromosome 4p16.3, with a maximum multipoint LOD score of 5. 64. Both families showed evidence of linkage to this locus. Critical meiotic recombinants place the gene in a 3-cM interval between D4S127 and 4p-telomere. Within this region a strong candidate is the gene for fibroblast growth factor receptor 3 (FGFR3); mutations in this gene have been implicated in a diverse set of disorders of bone development.  (+info)

The gene for cherubism maps to chromosome 4p16. (3/25)

Cherubism is an autosomal dominant disorder that may be related to tooth development and eruption. It is a disorder of age-related bone remodeling, mostly limited to the maxilla and the mandible, with loss of bone in the jaws and its replacement with large amounts of fibrous tissue. We have used a genomewide search with a three-generation family and have established linkage to chromosome 4p16. Three other families affected with cherubism were also genotyped and were mapped to the same locus. The combined LOD score is 4.21 at a recombination fraction of 0, and the locus spans an interval of approximately 22 cM.  (+info)

Cherubism in siblings: a case report. (4/25)

Cherubism is a non-neoplastic bone disease characterized by clinically evident bilateral, painless enlargements of the jaws that are said to give the patient a cherubic appearance. Cherubism may appear in solitary cases or in many members of the same family, often in multiple generations. On radiography, the lesions exhibit bilateral multilocular radiolucent areas. Histopathologic evaluation reveals proliferating fibrous connective tissue containing numerous multinucleated giant cells. Since the first description of this condition in 1933, almost 200 cases have been reported. We describe cherubism in 2 siblings and briefly review the literature on this subject.  (+info)

Temporal bone involvement in cherubism: case report. (5/25)

Cherubism is a rare benign hereditary fibro-osseous disease involving the mandible and maxilla. We report a case of cherubism in a 10-year-old girl for which the panoramic radiograph was insufficient for diagnosis of the disease. Clinical, histological, and radiological findings were discussed. The CT was taken and it confirmed not only the involvement of the jaws but also of the temporal bone. This was not found in the conventional radiograph.  (+info)

A novel mutation in the SH3BP2 gene causes cherubism: case report. (6/25)

BACKGROUND: Cherubism is a rare hereditary multi-cystic disease of the jaws, characterized by its typical appearance in early childhood, and stabilization and remission after puberty. It is genetically transmitted in an autosomal dominant fashion and the gene coding for SH3-binding protein 2 (SH3BP2) may be involved. CASE PRESENTATION: We investigated a family consisting of 21 members with 3 female affected individuals with cherubism from Northern China. Of these 21 family members, 17 were recruited for the genetic analysis. We conducted the direct sequence analysis of the SH3BP2 gene among these 17 family members. A disease-causing mutation was identified in exon 9 of the gene. It was an A1517G base change, which leads to a D419G amino acid substitution. CONCLUSION: To our knowledge, the A1517G mutation has not been reported previously in cherubism. This finding is novel.  (+info)

Jawing about TNF: new hope for cherubism. (7/25)

Mutations in the SH3-domain binding protein 2 (SH3BP2) are known to cause a rare childhood disorder called cherubism that is characterized by inflammation and bone loss in the jaw, but the mechanism has remained unclear. In this issue, Ueki et al. (Ueki et al., 2007) now demonstrate that a cherubism mutation activates mouse Sh3bp2 resulting in enhanced production of the cytokine TNF-alpha by myeloid cells, leading to both bone loss and inflammation.  (+info)

Increased myeloid cell responses to M-CSF and RANKL cause bone loss and inflammation in SH3BP2 "cherubism" mice. (8/25)

While studies of the adaptor SH3BP2 have implicated a role in receptor-mediated signaling in mast cells and lymphocytes, they have failed to identify its function or explain why SH3BP2 missense mutations cause bone loss and inflammation in patients with cherubism. We demonstrate that Sh3bp2 "cherubism" mice exhibit trabecular bone loss, TNF-alpha-dependent systemic inflammation, and cortical bone erosion. The mutant phenotype is lymphocyte independent and can be transferred to mice carrying wild-type Sh3bp2 alleles through mutant fetal liver cells. Mutant myeloid cells show increased responses to M-CSF and RANKL stimulation, and, through mechanisms of increased ERK 1/2 and SYK phosphorylation/activation, they form macrophages that express high levels of TNF-alpha and osteoclasts that are unusually large. M-CSF and RANKL stimulation of myeloid cells that overexpress wild-type SH3BP2 results in similar large osteoclasts. This indicates that the mutant phenotype reflects gain of SH3BP2 function and suggests that SH3BP2 is a critical regulator of myeloid cell responses to M-CSF and RANKL stimulation.  (+info)