Short-chain fatty acids suppress cholesterol synthesis in rat liver and intestine. (1/119)

We previously showed that plasma cholesterol levels decreased following ingestion of a short-chain fatty acid (SCFA) mixture composed of sodium salts of acetic, propionic, and butyric acids simulating cecal fermentation products of sugar-beet fiber (SBF). In the present study, we investigated whether hepatic and small intestinal cholesterol synthesis is involved in the cholesterol-lowering effects of SCFA and SBF. In vitro (expt. 1) and in vivo (expt. 2) cholesterol synthesis rates and the diurnal pattern of SCFA concentrations in portal plasma (expt. 3) were studied in three separate experiments in rats fed diets containing the SCFA mixture, SBF (100 g/kg diet), or the fiber-free control diet. Cholesterol synthesis was measured using 3H2O as a tracer. The in vitro rate of cholesterol synthesis, measured using liver slices, was greater in the SBF group, but not in the SCFA group, than in the fiber-free control group. In contrast, the hepatic cholesterol synthesis rate in vivo was lower in the SCFA group, but not in the SBF group, than in the control group. The mucosal cholesterol synthesis rate for the whole small intestine was <50% of the hepatic rate. The rate in the proximal region was slightly but significantly lower in the SCFA group, and was significantly higher in the SBF group than in the fiber-free group. The rate in the distal small intestines was also significantly greater in the SBF group than in the fiber-free group. Plasma total cholesterol concentrations were lower in the SCFA and SBF groups than in the fiber-free group in both experiments 2 and 3. Diurnal changes in portal SCFA and cholesterol levels were studied in the experiment 3. SCFA concentrations increased rapidly after the start of feeding the SCFA diet, and changes in plasma cholesterol were the reciprocal of those observed in SCFA. These results show that a decrease in hepatic cholesterol synthesis rate mainly contributes to the lowering of plasma cholesterol in rats fed the SCFA mixture diet. Changes in portal SCFA and cholesterol concentrations support this conclusion. In SBF-fed rats, SCFA produced by cecal fermentation are possibly involved in lowering plasma cholesterol levels by negating the counteractive induction of hepatic cholesterol synthesis caused by an increase in bile acid excretion.  (+info)

Reaction centers of photosystem II with a chemically-modified pigment composition: exchange of pheophytins with 13(1)-deoxo-13(1)-hydroxy-pheophytin a. (2/119)

Isolated reaction centers of photosystem II with an altered pigment content were obtained by chemical exchange of the native pheophytin a molecules with externally added 13(1)-deoxo-13(1)-hydroxy-pheophytin a. Judged from a comparison of the absorption spectra and photochemical activities of exchanged and control reaction centers, 70-80% of the pheophytin molecules active in charge separation are replaced by 13(1)-deoxo-13(1)-hydroxy-pheophytin a after double application of the exchange procedure. The new molecule at the active branch was not active photochemically. This appears to be the first stable preparation in which a redox active chromophore of the reaction center of photosystem II was modified by chemical substitution. The data are compatible with the presence of an active and inactive branch of cofactors, as in bacterial reaction centers. Possible applications of the 13(1)-deoxo-13(1)-hydroxy-pheophytin a-exchanged preparation to the spectral and functional analysis of native reaction centers of photosystem II are discussed.  (+info)

Ingestion of sugar beet fiber enhances irradiation-induced aberrant crypt foci in the rat colon under an apoptosis-suppressed condition. (3/119)

The induction of aberrant crypt foci (ACF) by irradiation of gamma-rays (60Co), and the effect of dietary sugar beet fiber (SBF) on irradiation-induced ACF were examined. We found that abdominal irradiation of gamma-rays could induce ACF in the rat colon. The irradiation was performed once a week at a dose rate of 2 or 3 Gy per irradiation. Irradiation-induced ACF were observed in the colon at 10 weeks after the first irradiation at dose of 2 Gy for six times or 3 Gy for four times. Dietary SBF had no effect on the number of ACF, aberrant crypts (AC) or AC/focus induced by abdominal gamma-irradiation. However, an ingestion of SBF resulted in an increase in the number of these parameters in apoptosis-suppressed rats by cycloheximide (CHX). An injection of CHX suppressed irradiation-induced apoptosis of the colonic epithelial cells for at least 6 h after the irradiation. In CHX-injected rats, an ingestion of SBF significantly increased the number of ACF, AC and AC/focus compared with fiber-free fed rats at 9 weeks after the first irradiation. On the other hand, in saline-injected rats, no significant difference was found between SBF and fiber-free diets in the number of ACF, AC and AC/focus through the experimental period. These results suggest that dietary SBF may be involved in the elimination of abnormal cells from an irradiated colon through the apoptosis of colonic epithelial cells. In this study, we have shown a new method for inducing ACF by using gamma-rays which were not influenced by luminal contents such as bacterial enzyme, at least in the initiation stage.  (+info)

The nuclear origin of the non-phosphorylating NADH dehydrogenases of plant mitochondria. (4/119)

The oxidation of matrix and cytosolic NADH by isolated beetroot and wheat leaf mitochondria was investigated to determine whether the rotenone-insensitive NADH dehydrogenases of plant mitochondria were the products of nuclear or mitochondrial genes. After aging beetroot tissue (slicing and incubating in a CaSO4 solution), the induction of the level of matrix NADH oxidation in the presence of rotenone was greatly reduced in mitochondria isolated from tissue treated with cycloheximide, a nuclear protein synthesis inhibitor. This was also true for the oxidation of cytosolic NADH. Mitochondria isolated from chloramphenicol-treated tissue exhibited greatly increased levels of both matrix and external rotenone-insensitive NADH oxidation when compared to the increase due to the aging process alone. This increase was not accompanied by an increase in matrix NAD-linked substrate dehydrogenases such as malic enzyme nor intra-mitochondrial NAD levels. Possible explanations for this increase in rotenone-insensitive NADH oxidation are discussed. Based on these results we have concluded that the matrix facing rotenone-insensitive NADH dehydrogenase of plant mitochondria is encoded by a nuclear gene and synthesis of the protein occurs in the cytosol.  (+info)

Role of the 14-3-3 proteins in the regulation of H+-ATPase activity in the plasma membrane of suspension-cultured sugar beet cells under cold stress. (5/119)

All higher plants possess highly specific binding sites for fusicoccin, a metabolite of the fungus Fusicoccum amygdali Del. These sites are harboured in the plasma membranes and formed by a 14-3-3 protein dimer associated with the C-terminal autoinhibitory domain of H+-ATPase. We considered the fusicoccin binding to plasma membranes to be an indicator of complexation between the 14-3-3 dimer and H+-ATPase, we assessed the effect of cold stress on the interaction of these proteins in suspension-cultured sugar beet cells and protoplasts derived from these cells. In both objects, upon lowering the temperature to 0-4 degrees C, a portion of the cytoplasmic 14-3-3 proteins became associated with the plasma membrane, which showed an increasing amount of ATPase/14-3-3 complexes and enhanced ATPase activity. Association between ATPase and 14-3-3 resulted in a several-fold rise in the H+ efflux from protoplasts and intact cells. We suppose that regulation of the H+ pumping under changing external conditions may be based on the interaction between H+-ATPase and the 14-3-3 proteins.  (+info)

Regulation of closterovirus gene expression examined by insertion of a self-processing reporter and by northern hybridization. (6/119)

A reporter open reading frame (ORF) coding for a fusion of bacterial beta-glucuronidase (GUS) with a proteinase domain (Pro) derived from tobacco etch potyvirus was utilized for tagging individual genes of beet yellows closterovirus (BYV). Insertion of this reporter ORF between the first and second codons of the BYV ORFs encoding the HSP70 homolog (HSP70h), a major capsid protein (CP), and a 20-kDa protein (p20) resulted in the expression of the processed GUS-Pro reporter from corresponding subgenomic RNAs. The high sensitivity of GUS assays permitted temporal analysis of reporter accumulation, revealing early expression from the HSP70h promoter, followed by the CP promoter and later the p20 promoter. The kinetics of transcription of the remaining BYV genes encoding a 64-kDa protein (p64), a minor capsid protein (CPm), and a 21-kDa protein (p21) were examined via Northern blot analysis. Taken together, the data indicated that the temporal regulation of BYV gene expression includes early (HSP70h, CPm, CP, and p21 promoters) and late (p64 and p20 promoters) phases. It was also demonstrated that the deletion of six viral genes that are nonessential for RNA amplification resulted in a dramatic increase in the level of transcription from one of the two remaining subgenomic promoters. Comparison with other positive-strand RNA viruses producing multiple subgenomic RNAs showed the uniqueness of the pattern of closterovirus transcriptional regulation.  (+info)

Possible role of xanthobaccins produced by Stenotrophomonas sp. strain SB-K88 in suppression of sugar beet damping-off disease. (7/119)

Three antifungal compounds, designated xanthobaccins A, B, and C, were isolated from the culture fluid of Stenotrophomonas sp. strain SB-K88, a rhizobacterium of sugar beet that suppresses damping-off disease. Production of xanthobaccin A in culture media was compared with the disease suppression activities of strain SB-K88 and less suppressive strains that were obtained by subculturing. Strain SB-K88 was applied to sugar beet seeds, and production of xanthobaccin A in the rhizosphere of seedlings was confirmed by using a test tube culture system under hydroponic culture conditions; 3 microg of xanthobaccin A was detected in the rhizosphere on a per-plant basis. Direct application of purified xanthobaccin A to seeds suppressed damping-off disease in soil naturally infested by Pythium spp. We suggest that xanthobaccin A produced by strain SB-K88 plays a key role in suppression of sugar beet damping-off disease.  (+info)

Cooperative block of the plant endomembrane ion channel by ruthenium red. (8/119)

Effects of ruthenium red (RR) on the slow Ca(2+)-activated Ca(2+)-permeable vacuolar channel have been studied by patch-clamp technique. Applied to the cytosolic side of isolated membrane patches, RR at concentrations of 0.1-5 microM produced two distinct effects on single channel kinetics, long lasting closures and a flickering block of the open state. The first effect was largely irreversible, whereas the second one could be washed out. The extent of flickering block steeply increased (zdelta = approximately 1.35) with the increase of cytosol-positive voltage, dragging RR into the channel pore. At least two RR ions are involved in the block according to Hill coefficient n = approximately 1.30 for the dose response curves. The on-rate rate of the drug binding linearly depended on the RR concentration, implying that one RR ion already plugged the pore. The blocked state was further stabilized by binding of the second RR. This stabilization was in excess of that predicted by independent binding as the dependence of unblocking rate on RR concentration revealed. A cooperative model was therefore employed to describe the kinetic behavior of RR binding. At zero voltage the half-blocking RR concentration of 36 microM and the bimolecular on-rate constant of 1.8 x 10(8) M(-1) s(-1) were estimated.  (+info)