Mouse monocyte-derived chemokine is involved in airway hyperreactivity and lung inflammation. (65/4263)

The cloning, expression, and function of the murine (m) homologue of human (h) monocyte-derived chemokine (MDC) is reported here. Like hMDC, mMDC is able to elicit the chemotactic migration in vitro of activated lymphocytes and monocytes. Among activated lymphocytes, Th2 cells were induced to migrate most efficiently. mMDC mRNA and protein expression is modulated during the course of an allergic reaction in the lung. Neutralization of mMDC with specific Abs in a model of lung inflammation resulted in prevention of airway hyperreactivity and significant reduction of eosinophils in the lung interstitium but not in the airway lumen. These data suggest that mMDC is essential in the transit/retention of leukocytes in the lung tissue rather than in their extravasation from the blood vessel or during their transepithelial migration into the airways. These results also highlight the relevance of factors, such as mMDC, that regulate the migration and accumulation of leukocytes within the tissue during the development of the key physiological endpoint of asthma, airway hyperreactivity.  (+info)

Thiazolidinedione inhibits production of RANTES in a cytokine-treated human lung epithelial cell line. (66/4263)

The chemokine RANTES is a potent chemoattractant for eosinophils. RANTES is produced by lung epithelial cells during eosinophil-rich inflammatory diseases such as asthma. In this study, we examined the effects of thiazolidinediones (TZD) on RANTES expression in a human lung epithelial cell line, A549. In A549 cells, interleukin-1beta and tumor necrosis factor-alpha induced endogenous RANTES protein secretion, mRNA expression, and promoter activity. The TZD inhibited these effects. Our data indicate that the suppression of the expression of RANTES can be accomplished by TZD treatment, raising the possibility that TZD might be of therapeutic value in diseases such as asthma.  (+info)

Active participation of CCR5(+)CD8(+) T lymphocytes in the pathogenesis of liver injury in graft-versus-host disease. (67/4263)

We examined the molecular pathogenesis of graft-versus-host disease-associated (GVHD-associated) liver injury in mice, focusing on the role of chemokines. At the second week after cell transfer in the parent-into-F1 model of GVHD, CD8(+) T cells -- especially donor-derived CD8(+) T cells -- infiltrated the liver, causing both portal hepatitis and nonsuppurative destructive cholangitis (NSDC). These migrating cells expressed CCR5. Moreover, macrophage inflammatory protein-1alpha (MIP-1alpha), one of the ligands for CCR5, was selectively expressed on intralobular bile duct epithelial cells, endothelial cells, and infiltrating macrophages and lymphocytes. Administration of anti-CCR5 antibody dramatically reduced the infiltration of CCR5(+)CD8(+) T lymphocytes into the liver, and consequently protected against liver damage in GVHD. The levels of Fas ligand (FasL) mRNA expression in the liver were also decreased by anti-CCR5 antibody treatment. Anti-MIP-1alpha antibody treatment also reduced liver injury. These results suggest that MIP-1alpha-induced migration of CCR5-expressing CD8(+) T cells into the portal areas of the liver plays a significant role in causing liver injury in GVHD; thus, CCR5 and its ligand may be the novel target molecules of therapeutic intervention of hepatic GVHD.  (+info)

The chemokine receptor CXCR3 is expressed on malignant B cells and mediates chemotaxis. (68/4263)

B- and T-cell recirculation is crucial for the function of the immune system, with the control of cell migration being mainly mediated by several chemokines and their receptors. In this study, we investigated the expression and function of CXCR3 on normal and malignant B cells from 65 patients with chronic lymphoproliferative disorders (CLDs). Although CXCR3 is lacking on CD5(+) and CD5(-) B cells from healthy subjects, it is expressed on leukemic B lymphocytes from all (31/31) patients with chronic lymphocytic leukemia (CLL). The presence of CXCR3 was heterogeneous in other B-cell disorders, being expressed in 2 of 7 patients with mantle cell lymphoma (MCL), 4 of 12 patients with hairy cell leukemia (HCL), and 11 of 15 patients with other subtypes of non-Hodgkin's lymphomas (NHLs). Chemotaxis assay shows that normal B cells from healthy subjects do not migrate in response to IFN-inducible protein 10 (IP-10) and IFN-gamma-induced monokine (Mig). In contrast, a definite migration in response to IP-10 and Mig has been observed in all malignant B cells from patients with CLL, but not in patients with HCL or MCL (1/7 cases tested). Neoplastic B cells from other NHLs showed a heterogenous pattern. The migration elicited by IP-10 and Mig was inhibited by blocking CXCR3. No effect of IP-10 and Mig chemokines was observed on the cytosolic calcium concentration in malignant B cells. The data reported here demonstrate that CXCR3 is expressed on malignant B cells from CLDs, particularly in patients with CLL, and represents a fully functional receptor involved in chemotaxis of malignant B lymphocytes.  (+info)

Local and systemic delivery of a stable aspirin-triggered lipoxin prevents neutrophil recruitment in vivo. (69/4263)

Aspirin (ASA) triggers a switch in the biosynthesis of lipid mediators, inhibiting prostanoid production and initiating 15-epi-lipoxin generation through the acetylation of cyclooxygenase II. These aspirin-triggered lipoxins (ATL) may mediate some of ASA's beneficial actions and therefore are of interest in the search for novel antiinflammatories that could manifest fewer unwanted side effects. Here, we report that design modifications to native ATL structure prolong its biostability in vivo. In mouse whole blood, ATL analogs protected at carbon 15 [15(R/S)-methyl-lipoxin A4 (ATLa1)] and the omega end [15-epi-16-(para-fluoro)-phenoxy-LXA4 (ATLa2)] were recoverable to approximately 90 and 100% at 3 hr, respectively, compared with a approximately 40% loss of native lipoxin A4. ATLa2 retains bioactivity and, at levels as low as approximately 24 nmol/mouse, potently inhibited tumor necrosis factor-alpha-induced leukocyte recruitment into the dorsal air pouch. Inhibition was evident by either local intra-air pouch delivery (approximately 77% inhibition) or systemic delivery by intravenous injection (approximately 85% inhibition) and proved more potent than local delivery of ASA. Rank order for inhibiting polymorphonuclear leukocyte infiltration was: ATLa2 (10 micrograms, i.v.) approximately ATLa2 (10 micrograms, local) approximately dexamethasone (10 micrograms, local) >ASA (1.0 mg, local). Applied topically to mouse ear skin, ATLa2 also inhibited polymorphonuclear leukocyte infiltration induced by leukotriene B4 (approximately 78% inhibition) or phorbol ester (approximately 49% inhibition), which initiates endogenous chemokine production. These results indicate that this fluorinated analog of natural aspirin-triggered lipoxin A4 is bioavailable by either local or systemic delivery routes and is a more potent and precise inhibitor of neutrophil accumulation than is ASA.  (+info)

Selection of a C5a receptor antagonist from phage libraries attenuating the inflammatory response in immune complex disease and ischemia/reperfusion injury. (70/4263)

A C5a-receptor antagonist was selected from human C5a phage display libraries in which the C terminus of des-Arg74-hC5a was mutated. The selected molecule is a competitive C5a receptor antagonist in vitro and in vivo. Signal transduction is interrupted at the level of G-protein activation. In addition, the antagonist does not cause any C5a receptor phosphorylation. Proinflammatory properties such as chemotaxis or lysosomal enzyme release of differentiated U937 cells, as well as C5a-induced changes in intracellular Ca2+ concentration of murine peritoneal macrophages, are inhibited. The in vivo efficacy was evaluated in three different animal models of immune complex diseases in mice, i.e., the reverse passive Arthus reaction in the peritoneum, skin, and lung. The i.v. application of the C5a receptor antagonist abrogated polymorphonuclear neutrophil accumulation in peritoneum and markedly attenuated polymorphonuclear neutrophil migration into the skin and the lung. In a model of intestinal ischemia/reperfusion injury, i.v. administration of the C5a receptor antagonist decreased local and remote tissue injury: bowel wall edema and hemorrhage as well as pulmonary microvascular dysfunction. These data give evidence that C5a is an important mediator triggering the inflammatory sequelae seen in immune complex diseases and ischemia/reperfusion injury. The selected C5a receptor antagonist may prove useful to attenuate the inflammatory response in these disorders.  (+info)

Interferon-gamma (IFN-gamma)-dependent protection and synthesis of chemoattractants for mononuclear leucocytes caused by IL-12 in the lungs of mice infected with Cryptococcus neoformans. (71/4263)

We have recently demonstrated that IL-12 induced cellular inflammatory responses consisting mainly of accumulation of mononuclear leucocytes in the lungs of mice infected with Cryptococcus neoformans and protected mice against fulminant infection. We examined the involvement of endogenously synthesized IFN-gamma in such a response by investigating the effects of a neutralizing monoclonal antibody against this cytokine. The latter treatment completely abrogated the positive effects of IL-12 on survival of infected mice and prevented IL-12-induced elimination of microbials from the lungs. Histopathological examination showed that accumulation of mononuclear leucocytes in the infected lungs caused by IL-12 was clearly inhibited by anti-IFN-gamma MoAb. We also examined the local production of mononuclear cell-attracting chemokines such as monocyte chemotactic protein-1 (MCP-1), regulated upon activation, normal T cell expressed and secreted (RANTES), macrophage inflammatory protein-1alpha (MIP-1alpha), MIP-1beta and IFN-gamma-inducible protein 10 (IP-10) in the lungs using a reverse transcriptase-polymerase chain reaction (RT-PCR) method. We found that these chemokines were not synthesized in the infected lungs, while IL-12 treatment markedly induced their production. Interestingly, neutralizing anti-IFN-gamma MoAb strongly suppressed IL-12-induced production of these chemokines. Similar results were obtained with MCP-1 and MIP-1alpha when their synthesis was measured at the protein level using respective ELISA kits. Our results indicate that IFN-gamma plays a central role in the protective effects of IL-12 by inducing mononuclear leucocyte-attracting chemokines and cellular inflammatory responses.  (+info)

Augmented production of chemokines (monocyte chemotactic protein-1 (MCP-1), macrophage inflammatory protein-1alpha (MIP-1alpha) and MIP-1beta) in patients with systemic sclerosis: MCP-1 and MIP-1alpha may be involved in the development of pulmonary fibrosis. (72/4263)

To determine the role of chemokines in the pathogenesis of systemic sclerosis (SSc), we examined serum levels, spontaneous production by peripheral blood mononuclear cells (PBMC), and histological distribution in the affected skin, of MCP-1, MIP-1alpha and MIP-1beta in SSc patients. Serum levels of these chemokines were examined by ELISA in 58 patients with SSc and 20 normal controls. The levels of these chemokines in culture supernatants from PBMC were also measured by ELISA. Serum levels and spontaneous production levels by PBMC of MCP-1, MIP-1alpha, and MIP-1beta were significantly elevated in patients with SSc compared with normal controls. Elevated serum levels of MCP-1 and MIP-1alpha significantly correlated with the presence of pulmonary fibrosis. MCP-1 expression in the skin of SSc was immunohistochemically examined using anti-MCP-1 MoAb. MCP-1 was strongly expressed in the epidermis, inflammatory mononuclear cells, and vascular endothelial cells in the sclerotic skin of SSc patients, but not expressed in any control skin. Furthermore, the MCP-1 expression in inflammatory mononuclear cells and endothelial cells significantly correlated with earlier onset of SSc. Thus, MCP-1, MIP-1alpha and MIP-1beta may be involved in the disease process, possibly by augmenting leucocyte migration into the affected tissues in SSc. Furthermore, MCP-1 and MIP-1alpha may play an important role in the development of pulmonary fibrosis in SSc.  (+info)