The T cell-specific CXC chemokines IP-10, Mig, and I-TAC are expressed by activated human bronchial epithelial cells. (1/169)

Recruitment of activated T cells to mucosal surfaces, such as the airway epithelium, is important in host defense and for the development of inflammatory diseases at these sites. We therefore asked whether the CXC chemokines IFN-induced protein of 10 kDa (IP-10), monokine induced by IFN-gamma (Mig), and IFN-inducible T-cell alpha-chemoattractant (I-TAC), which specifically chemoattract activated T cells by signaling through the chemokine receptor CXCR3, were inducible in respiratory epithelial cells. The effects of proinflammatory cytokines, including IFN-gamma (Th1-type cytokine), Th2-type cytokines (IL-4, IL-10, and IL-13), and dexamethasone were studied in normal human bronchial epithelial cells (NHBEC) and in two human respiratory epithelial cell lines, A549 and BEAS-2B. We found that IFN-gamma, but not TNF-alpha or IL-1 beta, strongly induced IP-10, Mig, and I-TAC mRNA accumulation mainly in NHBEC and that TNF-alpha and IL-1 beta synergized with IFN-gamma induction in all three cell types. High levels of IP-10 protein (> 800 ng/ml) were detected in supernatants of IFN-gamma/TNF-alpha-stimulated NHBEC. Neither dexamethasone nor Th2 cytokines modulated IP-10, Mig, or I-TAC expression. Since IFN-gamma is up-regulated in tuberculosis (TB), using in situ hybridization we studied the expression of IP-10 in the airways of TB patients and found that IP-10 mRNA was expressed in the bronchial epithelium. In addition, IP-10-positive cells obtained by bronchoalveolar lavage were significantly increased in TB patients compared with normal controls. These results show that activated bronchial epithelium is an important source of IP-10, Mig, and I-TAC, which may, in pulmonary diseases such as TB (in which IFN-gamma is highly expressed) play an important role in the recruitment of activated T cells.  (+info)

Gene expression and production of the monokine induced by IFN-gamma (MIG), IFN-inducible T cell alpha chemoattractant (I-TAC), and IFN-gamma-inducible protein-10 (IP-10) chemokines by human neutrophils. (2/169)

Monokine induced by IFN-gamma (MIG), IFN-inducible T cell alpha chemoattractant (I-TAC), and IFN-gamma-inducible protein of 10 kDa (IP-10) are related members of the CXC chemokine subfamily that bind to a common receptor, CXCR3, and that are produced by different cell types in response to IFN-gamma. We have recently reported that human polymorphonuclear neutrophils (PMN) have the capacity to release IP-10. Herein, we show that PMN also have the ability to produce MIG and to express I-TAC mRNA in response to IFN-gamma in combination with either TNF-alpha or LPS. While IFN-gamma, alone or in association with agonists such as fMLP, IL-8, granulocyte (G)-CSF and granulocyte-macrophage (GM)-CSF, failed to influence MIG, IP-10, and I-TAC gene expression, IFN-alpha, in combination with TNF-alpha, LPS, or IL-1beta, resulted in a considerable induction of IP-10 release by neutrophils. Furthermore, IL-10 and IL-4 significantly suppressed the expression of MIG, IP-10, and I-TAC mRNA and the extracellular production of MIG and IP-10 in neutrophils stimulated with IFN-gamma plus either LPS or TNF-alpha. Finally, supernatants harvested from stimulated PMN induced migration and rapid integrin-dependent adhesion of CXCR3-expressing lymphocytes; these activities were significantly reduced by neutralizing anti-MIG and anti-IP-10 Abs, suggesting that they were mediated by MIG and IP-10 present in the supernatants. Since MIG, IP-10, and I-TAC are potent chemoattractants for NK cells and Th1 lymphocytes, the ability of neutrophils to produce these chemokines might contribute not only to the progression and evolution of the inflammatory response, but also to the regulation of the immune response.  (+info)

Human IP-9: A keratinocyte-derived high affinity CXC-chemokine ligand for the IP-10/Mig receptor (CXCR3). (3/169)

Chemokines and their receptors play a crucial part in the recruitment of leukocytes into inflammatory sites. The CXC chemokines IP-10 and Mig are selective attractants for activated (memory) T cells, the predominant cell type in skin infiltrates in many inflammatory dermatoses. The selectivity for activated T cells can be explained by the fact that both chemokines exert their effects through a common receptor, CXCR3, which is nearly exclusively expressed on activated T cells. The aim of this study was to identify biologically active CXCR3 ligands produced by keratinocytes. To that end, Chinese hamster ovary cells expressing a cDNA encoding CXCR3 were challenged with proteins obtained from interferon-gamma stimulated keratinocytes and subsequently monitored for effects on second messenger systems. By this approach we were able to isolate IP-10 and Mig, and in addition identified a novel highly potent ligand for the CXCR3 receptor, designated interferon-gamma-inducible protein-9, which proved to be chemotactic for activated T cells expressing CXCR3. Protein sequence and mass spectrometric analysis followed by molecular cloning of the cDNA encoding interferon-gamma-inducible protein-9, revealed that interferon-gamma-inducible protein-9 is a CXC chemokine with a molecular mass of 8303 Da. From a GenBank database query it became clear that interferon-gamma-inducible protein-9 is in fact the protein encoded by the cDNA sequence also known as beta-R1, H174 or I-TAC. In situ hybridization experiments showed that interferon-gamma-inducible protein-9 mRNA is expressed by basal layer keratinocytes in a variety of skin disorders, including allergic contact dermatitis, lichen planus, and mycosis fungoides suggesting a functional role for this chemokine in skin immune responses.  (+info)

Genomic organization, sequence and transcriptional regulation of the human CXCL 11(1) gene. (4/169)

CXCL 11, encoded by the cDNA sequences designated beta-R1, H-174, or I-TAC, is a CXC chemokine ligand for CXCR3 and assumed to be involved in inflammatory diseases characterized by the presence of activated T-cells. We here describe the genomic organization (four exons interrupted by three introns of 585, 98 and 230 bp) and sequence including 960 bp from the immediate 5'-upstream region of the human CXCL 11 gene. Within the promoter region, consensus sequences for regulatory elements (ISRE, GAS, NF-kappaB) important for cytokine-induced gene transcription were identified. The effect of (pro)inflammatory cytokines on CXCL 11 mRNA expression in monocytic cell lines (THP-1, U937) and primary cultures of dermal fibroblasts and endothelial cells were examined using Northern blot analysis. For these cell types, IFN-gamma was a potent inducer of CXCL 11 transcription, which was synergistically enhanced by TNF-alpha.  (+info)

The CXCR3 activating chemokines IP-10, Mig, and IP-9 are expressed in allergic but not in irritant patch test reactions. (5/169)

Differentiation between allergic and irritant contact dermatitis reactions is difficult, as both inflammatory diseases are clinically, histologically, and immunohistologically very similar. Previous studies in mice revealed that the chemokine IP-10 is exclusively expressed in allergic contact dermatitis reactions. In the present study, we investigated whether the mRNA expression of IP-10 and the related CXCR3 activating chemokines, Mig and IP-9 are also differentially expressed in human allergic contact dermatitis and irritant contact dermatitis reactions. Skin biopsies from allergic (13 cases) and sodium lauryl sulfate-induced irritant patch test reactions (13 cases), obtained 1-72 h after patch testing, were studied by means of an in situ hybridization technique. Results of chemokine mRNA expression were correlated with clinical scoring, histology, and immunohistochemical data including the proportion of inflammatory cells expressing CXCR3, the receptor for IP-10, Mig, and IP-9, and ICAM-1 and HLA-DR expression on keratinocytes. IP-10, Mig, and IP-9 mRNA were detected in seven of nine allergic contact dermatitis reactions after 24-72 h, but not in sodium lauryl sulfate-induced irritant contact dermatitis reactions. ICAM-1 expression by keratinocytes was only found in allergic contact dermatitis reactions and correlated with chemokine expression. Moreover, up to 50% of the infiltrating cells in allergic contact dermatitis expressed CXCR3, in contrast to only 20% in irritant contact dermatitis reactions. In conclusion, we have demonstrated differences in chemokine expression between allergic contact dermatitis and irritant contact dermatitis reactions, which might reflect different regulatory mechanisms operating in these diseases and may be an important clue for differentiation between allergic contact dermatitis and irritant contact dermatitis reactions.  (+info)

Differential expression of three T lymphocyte-activating CXC chemokines by human atheroma-associated cells. (6/169)

Activated T lymphocytes accumulate early in atheroma formation and persist at sites of lesion growth and rupture, suggesting that they may play an important role in the pathogenesis of atherosclerosis. Moreover, atherosclerotic lesions contain the Th1-type cytokine IFN-gamma, a potentiator of atherosclerosis. The present study demonstrates the differential expression of the 3 IFN-gamma-inducible CXC chemokines--IFN-inducible protein 10 (IP-10), monokine induced by IFN-gamma (Mig), and IFN-inducible T-cell alpha chemoattractant (I-TAC)--by atheroma-associated cells, as well as the expression of their receptor, CXCR3, by all T lymphocytes within human atherosclerotic lesions in situ. Atheroma-associated endothelial cells (ECs), smooth muscle cells (SMCs), and macrophages (MO) all expressed IP-10, whereas Mig and I-TAC were mainly expressed in ECs and MO, as detected by double immunofluorescence staining. ECs of microvessels within lesions also expressed abundant I-TAC. In vitro experiments supported these results and showed that IL-1beta, TNF-alpha, and CD40 ligand potentiated IP-10 expression from IFN-gamma-stimulated ECs. In addition, nitric oxide (NO) treatment decreased IFN-gamma induction of IP-10. Our findings suggest that the differential expression of IP-10, Mig, and I-TAC by atheroma-associated cells plays a role in the recruitment and retention of activated T lymphocytes observed within vascular wall lesions during atherogenesis.  (+info)

Expression of IFN-inducible T cell alpha chemoattractant by human endothelial cells is cyclosporin A-resistant and promotes T cell adhesion: implications for cyclosporin A-resistant immune inflammation. (7/169)

IFN-inducible T cell alpha chemoattractant (I-TAC) is a recently discovered member of the CXC chemokine family. It is a potent T cell chemoattractant expressed by IFN-gamma-treated astrocytes, monocytes, keratinocytes, bronchial epithelial cells, and neutrophils. In this study, we show that I-TAC is also expressed by IFN-gamma-treated endothelial cells (EC), both at the mRNA and protein levels. Induction of the I-TAC message is rapid and sustained over 24 h. TNF-alpha does not induce I-TAC mRNA alone, but does act synergistically with IFN-gamma. Blocking Abs to I-TAC, or to its receptor, CXCR3, reduce T cell adhesion to EC monolayers demonstrating that the expressed protein is functional. Finally, the expression of I-TAC by EC is resistant to the immunosuppressive drug cyclosporin A, suggesting that I-TAC may contribute to the chronic immune inflammation characteristic of graft arteriosclerosis.  (+info)

The murine chemokine CXCL11 (IFN-inducible T cell alpha chemoattractant) is an IFN-gamma- and lipopolysaccharide-inducible glucocorticoid-attenuated response gene expressed in lung and other tissues during endotoxemia. (8/169)

A new murine chemokine was identified in a search for glucocorticoid-attenuated response genes induced in the lung during endotoxemia. The first 73 residues of the predicted mature peptide are 71% identical and 93% similar to human CXCL11/IFN-inducible T cell alpha chemoattractant (I-TAC) (alias beta-R1, H174, IFN-inducible protein 9 (IP-9), and SCYB9B). The murine chemokine has six additional residues at the carboxyl terminus not present in human I-TAC. Identification of this cDNA as murine CXCL11/I-TAC is supported by phylogenetic analysis and by radiation hybrid mapping of murine I-TAC (gene symbol Scyb11) to mouse chromosome 5 close to the genes for monokine induced by IFN-gamma (MIG) and IP10. Murine I-TAC mRNA is induced in RAW 264.7 macrophages by IFN-gamma or LPS and is weakly induced by IFN-alphabeta. IFN-gamma induction of murine I-TAC is markedly enhanced by costimulation with LPS or IL-1beta in RAW cells and by TNF-alpha in both RAW cells and Swiss 3T3 fibroblasts. Murine I-TAC is induced in multiple tissues during endoxemia, with strongest expression in lung, heart, small intestine, and kidney, a pattern of tissue expression different from those of MIG and IP10. Peak expression of I-TAC message is delayed compared with IP10, both in lung after i.v. LPS and in RAW 264.7 cells treated with LPS or with IFN-gamma. Pretreatment with dexamethasone strongly attenuates both IFN-gamma-induced I-TAC expression in RAW cells and endotoxemia-induced I-TAC expression in lung and small intestine. The structural and regulatory similarities of murine and human I-TAC suggest that mouse models will be useful for investigating the role of this chemokine in human biology and disease.  (+info)