Human NK cells express CC chemokine receptors 4 and 8 and respond to thymus and activation-regulated chemokine, macrophage-derived chemokine, and I-309. (9/183)

NK cells respond to various chemokines, suggesting that they express receptors for these chemokines. In this paper, we show that IL-2-activated NK (IANK) cells express CC chemokine receptor 4 (CCR4) and CCR8, as determined by flow cytometric, immunoblot, and RNase protection assays. Macrophage-derived chemokine (MDC), the ligand for CCR4, induces the phosphorylation of CCR4 within 0.5 min of activating IANK cells with this ligand. This is corroborated with the recruitment of G protein-coupled receptor kinases 2 and 3 and their association with CCR4 in IANK cell membranes. Also, CCR4 is internalized between 5 and 45 min but reappears in the membranes after 60 min of stimulation with MDC. MDC, thymus and activation-regulated chemokine (TARC), and I-309 induce the chemotaxis of IANK cells, an activity that is inhibited upon pretreatment of these cells with pertussis toxin, suggesting that receptors for these chemokines are coupled to pertussis toxin-sensitive G proteins. In the calcium release assay, cross-desensitization experiments showed that TARC completely desensitizes the calcium flux response induced by MDC or I-309, whereas both MDC and I-309 partially desensitize the calcium flux response induced by TARC. These results suggest that TARC utilizes CCR4 and CCR8. Our results are the first to show that IL-2-activated NK cells express CCR4 and CCR8, suggesting that these receptors are not exclusive for Th2 cells.  (+info)

Pivotal role of the CC chemokine, macrophage-derived chemokine, in the innate immune response. (10/183)

Macrophage-derived chemokine (MDC), a recently identified CC chemokine, has been regarded to be involved in chronic inflammation and dendritic cell and lymphocyte homing. In this study, we demonstrate a pivotal role for MDC during experimental sepsis induced by cecal ligation and puncture (CLP). Intraperitoneal administration of MDC (1 microg/mouse) protected mice from CLP-induced lethality. The survival was accompanied by increased number of peritoneal macrophages and decreased recovery of viable bacteria from the peritoneum and peripheral blood. In addition, mice treated with an i.p. injection of MDC cleared bacteria more effectively than those in the control when 3 x 108 CFU live Escherichia coli was i.p. inoculated. Endogenous MDC was detected in the peritoneum after CLP, and neutralization of the MDC with anti-MDC Abs decreased CLP-induced recruitment of peritoneal macrophages and increased the recovery of viable bacteria from the peritoneum and peripheral blood. MDC blockade was deleterious in the survival of mice after CLP. In vitro, MDC enhanced the phagocytic and killing activities of peritoneal macrophages to E. coli and induced both a respiratory burst and the release of lysozomal enzyme from macrophages. Furthermore, MDC dramatically ameliorated CLP-induced systemic tissue inflammation as well as tissue dysfunction, which were associated in part with decreased levels of TNF-alpha, macrophage inflammatory proteins-1alpha and -2, and KC in specific tissues. Collectively, these results indicate novel regulatory activities of MDC in innate immunity during sepsis and suggest that MDC may aid in an adjunct therapy in sepsis.  (+info)

A key role for CC chemokine receptor 4 in lipopolysaccharide-induced endotoxic shock. (11/183)

CC chemokine receptor (CCR)4, a high affinity receptor for the CC chemokines thymus and activation-regulated chemokine (TARC) and macrophage-derived chemokine (MDC), is expressed in the thymus and spleen, and also by peripheral blood T cells, macrophages, platelets, and basophils. Recent studies have shown that CCR4 is the major chemokine receptor expressed by T helper type 2 (Th2) polarized cells. To study the in vivo role of CCR4, we have generated CCR4-deficient (CCR4(-/-)) mice by gene targeting. CCR4(-/-) mice developed normally. Splenocytes and thymocytes isolated from the CCR4(-/-) mice failed to respond to the CCR4 ligands TARC and MDC, as expected, but also surprisingly did not undergo chemotaxis in vitro in response to macrophage inflammatory protein (MIP)-1alpha. The CCR4 deletion had no effect on Th2 differentiation in vitro or in a Th2-dependent model of allergic airway inflammation. However, CCR4(-/-) mice exhibited significantly decreased mortality on administration of high or low dose bacterial lipopolysaccharide (LPS) compared with CCR4(+/+) mice. After high dose LPS treatment, serum levels of tumor necrosis factor alpha, interleukin 1beta, and MIP-1alpha were reduced in CCR4(-/-) mice, and decreased expression of MDC and MIP-2 mRNA was detected in peritoneal exudate cells. Analysis of peritoneal lavage cells from CCR4(-/)- mice by flow cytometry also revealed a significant decrease in the F4/80(+) cell population. This may reflect a defect in the ability of the CCR4(-/-) macrophages to be retained in the peritoneal cavity. Taken together, our data reveal an unexpected role for CCR4 in the inflammatory response leading to LPS-induced lethality.  (+info)

Macrophage-derived chemokine and EBI1-ligand chemokine attract human thymocytes in different stage of development and are produced by distinct subsets of medullary epithelial cells: possible implications for negative selection. (12/183)

The chemoattractant activity of macrophage-derived chemokine (MDC), EBI1-ligand chemokine (ELC), and secondary lymphoid tissue chemokine (SLC) on human thymocytes was analyzed. Both ELC and SLC caused the accumulation of CD4+CD8- or CD4-CD8+ CD45RA+ thymocytes showing high CD3 expression. By contrast, a remarkable proportion of MDC-responsive thymocytes were CD4+CD8+ cells exhibiting reduced levels of CD8 or CD4+CD8- cells showing CD3 and CD45R0, but not CD45RA. MDC-responsive thymocyte suspensions were enriched in cells expressing the MDC receptor, CCR4, selectively localized to the medulla, and in CD30+ cells, whereas ELC-responsive thymocytes never expressed CD30. Reactivity to both MDC and ELC was localized to cells of the medullary areas, but never in the cortex. Double immunostaining showed no reactivity for either MDC or ELC by T cells, macrophages, or mature dendritic cells, whereas many medullary epithelial cells were reactive to MDC or ELC. However, MDC reactivity was consistently localized to the outer wall of Hassal's corpuscles, whereas ELC reactivity was often found in cells surrounding medullary vessels, but not in Hassal's corpuscles. Moreover, while most MDC-producing cells also stained positive for CD30L, this molecule was never found on ELC-producing cells. We suggest therefore that CD30L-expressing MDC-producing medullary epithelial cells attract CCR4-expressing thymocytes, thus favoring the CD30/CD30L interaction, and therefore the apoptosis, of cells that are induced to express CD30 by autoantigen activation. By contrast, ELC production by CD30L-lacking medullary epithelial cells may induce the migration into periphery of mature thymocytes that have survived the process of negative selection.  (+info)

Inducible expression of a Th2-type CC chemokine thymus- and activation-regulated chemokine by human bronchial epithelial cells. (13/183)

CCR4 is now known to be selectively expressed in Th2 cells. Since the bronchial epithelium is recognized as an important source of mediators fundamental to the manifestation of respiratory allergic inflammation, we studied the expression of two functional ligands for CCR4, i.e., macrophage-derived chemokine (MDC) and thymus- and activation-regulated chemokine (TARC), in bronchial epithelial cells. The bronchial epithelium of asthmatics and normal subjects expressed TARC protein, and the asthmatics showed more intense expression than the normal subjects. On the other hand, MDC expression was only weakly detected in the asthmatics, but the intensity was not significantly different from that of normal subjects. Combination of TNF-alpha and IL-4 induced expression of TARC protein and mRNA in bronchial epithelial A549 cells, which was slightly up-regulated by IFN-gamma. The enhancement by IFN-gamma was more pronounced in bronchial epithelial BEAS-2B cells, and a maximum production occurred with combination of TNF-alpha, IL-4, and IFN-gamma. On the other hand, MDC was essentially not expressed in any of the cultures. Furthermore, expressions of TARC protein and mRNA were almost completely inhibited by glucocorticoids. These results indicate that the airway epithelium represents an important source of TARC, which potentially plays a role via a paracrine mechanism in the development of allergic respiratory diseases. Furthermore, the beneficial effect of inhaled glucocorticoids on asthma may be at least in part due to their direct inhibitory effect on TARC generation by the bronchial epithelium.  (+info)

Enhanced pulmonary allergic responses to Aspergillus in CCR2-/- mice. (14/183)

Allergic responses to Aspergillus species exacerbate asthma and cystic fibrosis. The natural defense against live Aspergillus fumigatus spores or conidia depends on the recruitment and activation of mononuclear and polymorphonuclear leukocytes, events that are dependent on chemotactic cytokines. In this study, we explored the relative contribution of the monocyte chemoattractant protein-1 receptor, CCR2, in the pulmonary response to A. fumigatus conidia. Following sensitization to soluble A. fumigatus Ags, mice lacking CCR2 due to targeted deletion were markedly more susceptible to the injurious effects of an intrapulmonary challenge with live conidia compared with mice that expressed CCR2 or CCR2+/+. CCR2-/- mice exhibited a major defect in the recruitment of polymorphonuclear cells, but these mice also had significantly more eosinophils and lymphocytes in bronchoalveolar lavage samples. CCR2-/- mice also had significant increases in serum levels of total IgE and whole lung levels of IL-5, IL-13, eotaxin, and RANTES compared with CCR2+/+ mice. Airway inflammation, hyper-responsiveness to spasmogens, and subepithelial fibrosis were significantly enhanced in CCR2-/- mice compared with CCR2+/+ mice after the conidia challenge. Thus, these findings demonstrate that CCR2 plays an important role in the immune response against A. fumigatus, thereby limiting the allergic airway inflammatory and remodeling responses to this fungus.  (+info)

Macrophage-derived chemokine (MDC). (15/183)

Macrophage-derived chemokine (MDC) is a CC chemokine paradigmatic of emerging aspects of chemokine immunobiology. It is constitutively expressed, yet microbial products and cytokines regulate its expression with divergent effects of type II (IL-4 and IL-13) and type I (interferon) cytokines. Processing of the mature protein by dipeptidyl peptidase IV/CD26 provides a further level of regulation. It acts on diverse cellular targets including dendritic cells (DC), NK cells, and T cell subsets. Among these, MDC is a potent attractant for CCR4 expressing polarized Th2 and Tc2 cells, and evidence is consistent with a role of this chemokine as an amplification loop of polarized type II responses. Emerging indications on the involvement of MDC in diverse pathologies, ranging from allergic reactions to HIV infection and neoplasia, are discussed.  (+info)

C-C chemokine receptor 4 expression defines a major subset of circulating nonintestinal memory T cells of both Th1 and Th2 potential. (16/183)

CCR4, a chemokine receptor for macrophage-derived chemokine (MDC) and thymus and activation-regulated chemokine (TARC), has been implicated as a preferential marker for Th2 lymphocytes. Following in vitro polarization protocols, most Th2 lymphocytes express CCR4 and respond to its ligands TARC and MDC, whereas Th1 lymphocytes express CXC chemokine receptor 3 and CCR5 (but not CCR4). We show in this study that CCR4 is a major receptor for MDC and TARC on T lymphocytes, as anti-CCR4 mAbs significantly inhibit the migration of these cells to MDC and TARC. CCR4 is also highly expressed in most single-positive CD4(+) thymocytes and on a major fraction of blood nonintestinal (alpha(4)beta(7)(-)) memory CD4 lymphocytes, including almost all skin memory CD4(+) cells expressing the cutaneous lymphocyte Ag (CLA), but weakly or not expressed in other subsets in thymus and blood. Interestingly, major fractions of circulating CCR4(+) memory CD4 lymphocytes coexpress the Th1-associated receptors CXC chemokine receptor 3 and CCR5, suggesting a potential problem in using these markers for Th1 vs Th2 lymphocyte cells. Moreover, although production of Th2 cytokines in blood T cells is associated with CCR4(+) CD4 lymphocytes, significant numbers of freshly isolated circulating CCR4(+) memory CD4 lymphocytes (including both CLA(+) and CLA(-) fractions) readily express the Th1 cytokine IFN-gamma after short-term stimulation. Our results are consistent with a role for CCR4 as a major trafficking receptor for systemic memory T cells, and indicate that the patterns and regulation of chemokine receptor expression in vivo are more complex than indicated by current in vitro models of Th1 vs Th2 cell generation.  (+info)