MIP-3alpha/CCL20 in renal transplantation and its possible involvement as dendritic cell chemoattractant in allograft rejection. (73/275)

Graft-infiltrating dendritic cells (DC) and alloreactive T lymphocytes play a critical role in renal allograft rejection. Renal proximal tubular epithelial cells (TEC) are considered as active players in the attraction of leukocytes during renal inflammatory responses. Macrophage inflammatory protein (MIP)-3alpha/CCL20 is a major chemokine expressed by epithelial cells that attracts immature DC. In the present study, we present evidence that also the transplanted kidney can be a major source of MIP-3alpha/CCL20. Renal transplant recipients with rejection showed significantly increased excretion of urinary MIP-3alpha/CCL20 that correlated with transplant function. The tubular staining for MIP-3alpha/CCL20 in renal biopsies of patients with rejection as well as in vitro studies with primary human TEC indicated that TEC might be responsible for the increased urinary MIP-3alpha/CCL20. Furthermore, MIP-3alpha/CCL20 produced by activated TEC was highly potent in the attraction of CD1a+CD34+-derived DC precursors. These data suggest a role for MIP-3alpha/CCL20 in amplification of the immune response during renal allograft rejection by attraction of CCR6+ inflammatory cells, which may include DC, to the site of inflammation.  (+info)

Increased number of mature dendritic cells in Crohn's disease: evidence for a chemokine mediated retention mechanism. (74/275)

BACKGROUND AND AIMS: Activation of T cells by dendritic cells (DC) is thought to play a pivotal role in induction and maintenance of Crohn's disease. Detailed analyses however concerning the phenotype and maturation of DC as well as the mechanisms underlying their recruitment are still lacking for Crohn's disease. METHODS: Different myeloid and plasmacytoid DC subsets were characterised by immunohistochemistry. Expression of the so-called "lymphoid" chemokines CCL19, CCL20, and CCL21 was determined by real time reverse transcription-polymerase chain reaction in Crohn's disease and normal controls. Furthermore, expression of CCL19, CCL20, and CCL21 as well as their receptors CCR6 (for CCL20) and CCR7 (for CCL19 and CCL21) was characterised by immunohistochemistry and, in addition, their cellular localisation was determined by double immunofluorescence investigations. RESULTS: Colonic tissue affected by Crohn's disease was characterised by an increased number of mature myeloid DC forming clusters with proliferating T cells. In keeping with their advanced maturation, DC possess the chemokine receptor CCR7. Increased expression of the CCR7 ligands CCL19 by DC themselves as well as CCL21 by reticular cells and lymphatic vessels was observed in Crohn's disease, thereby causing the matured DC to be trapped at the site of inflammation. CONCLUSION: Our results demonstrate that autocrine and paracrine actions of lymphoid chemokines in Crohn's disease may lead to increased numbers of mature DC away from their usual migration to lymphoid organs and result in the development of a tertiary lymphatic tissue within the bowel wall maintaining the autoimmune inflammation in Crohn's disease.  (+info)

Iron chelator induces MIP-alpha/CCL20 in human intestinal epithelial cells: implication for triggering mucosal adaptive immunity. (75/275)

A previous report by this laboratory demonstrated that bacterial iron chelator (siderophore) triggers inflammatory signals, including the production of CXC chemokine IL-8, in human intestinal epithelial cells (IECs). Microarray-based gene expression profiling revealed that iron chelator also induces macrophage inflammatory protein 3 alpha (MIP-3alpha)/CC chemokine-ligand 20 (CCL20). As CCL20 is chemotactic for the cells involved in host adaptive immunity, this suggests that iron chelator may stimulate IECs to have the capacity to link mucosal innate and adaptive immunity. The basal medium from iron chelator deferoxamine (DFO)-treated HT-29 monolayers was as chemotactic as recombinant human CCL20 at equivalent concentrations to attract CCR6(+) cells. The increase of CCL20 protein secretion appeared to correspond to that of CCL20 mRNA levels, as determined by real-time quantitative RT-PCR. The efficacy of DFO at inducing CCL20 mRNA was also observed in human PBMCs and in THP-1 cells, but not in human umbilical vein endothelial cells. Interestingly, unlike other proinflammatory cytokines, such as TNF-alpha and IL-1beta, a time-dependent experiment revealed that DFO slowly induces CCL20, suggesting a novel mechanism of action. A pharmacologic study also revealed that multiple signaling pathways are differentially involved in CCL20 production by DFO, while some of those pathways are not involved in TNF-alpha-induced CCL20 production. Collectively, these results demonstrate that, in addition to some bacterial products known to induce host adaptive immune responses, direct chelation of host iron by infected bacteria may also contribute to the initiation of host adaptive immunity in the intestinal mucosa.  (+info)

Increase of CCL20 expression by human gingival fibroblasts upon stimulation with cytokines and bacterial endotoxin. (76/275)

We have demonstrated recently that CCL20 was expressed in periodontal diseased tissues and abundant CCR6 positive T cells infiltrated in periodontally diseased tissue. However, it is uncertain which cells can elicit CCL20 production. In the present study, we examined the properties of CCL20 production by human gingival fibroblasts (HGF) culture. Here, we report that interleukin-1 beta (IL-1beta), tumour necrosis factor-alpha (TNF-alpha) and Escherichia coli lipopolysaccharide (LPS) can significantly induce the production of CCL20 by HGF. We found that TNF-alpha and E. coli LPS enhanced the production of CCL20 by HGF treated with IL-1beta. In contrast, interferon-gamma (IFN-gamma) dramatically diminished CCL20 production induced by IL-1beta. Moreover, we demonstrated that nuclear factor-kappaB (NF-kappaB), p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases (ERK) play an important role in mediating the production of CCL20 induced by IL-1beta and TNF-alpha. On the other hand, we found that not only NF-kappaB, p38 MAPK and ERK but also c-Jun NH2-terminal kinase (JNK) are involved in CCL20 production induced by E. coli LPS. Finally, we found that HGF express CCR6, CCL20 receptor, and CCL20 induced vascular endothelial growth factor (VEGF) by HGF. Taken together, these findings that HGF will be a source of CCL20 in periodontal tissue, and the CCL20 production will be controlled by proinflammatory cytokine and bacterial LPS in periodontally diseased tissue. Thus, CCL20 by HGF might be involved in inflammatory cells infiltration, and promote the progression of periodontal disease.  (+info)

Up-regulation of CC chemokine ligand 20 expression in human airway epithelium by IL-17 through a JAK-independent but MEK/NF-kappaB-dependent signaling pathway. (77/275)

CCL20, like human beta-defensin (hBD)-2, is a potent chemoattractant for CCR6-positive immature dendritic cells and T cells in addition to recently found antimicrobial activities. We previously demonstrated that IL-17 is the most potent cytokine to induce an apical secretion and expression of hBD-2 by human airway epithelial cells, and the induction is JAK/NF-kappaB-dependent. Similar to hBD-2, IL-17 also induced CCL20 expression, but the nature of the induction has not been elucidated. Compared with a panel of cytokines (IL-1alpha, 1beta, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 18, IFN-gamma, GM-CSF, and TNF-alpha), IL-17 was as potent as IL-1alpha, 1beta, and TNF-alpha, with a time- and dose-dependent phenomenon in stimulating CCL20 expression in both well-differentiated primary human and mouse airway epithelial cell culture systems. The stimulation was largely dependent on the treatment of polarized epithelial cultures from the basolateral side with IL-17, achieving an estimated 4- to 10-fold stimulation at both message and protein levels. More than 90% of induced CCL20 secretion was toward the basolateral compartment (23.02 +/- 1.11 ng/chamber/day/basolateral vs 1.82 +/- 0.82 ng/chamber/day/apical). Actinomycin D experiments revealed that enhanced expression did not occur at mRNA stability. Inhibitor studies showed that enhanced expression was insensitive to inhibitors of JAK/STAT, p38, JNK, and PI3K signaling pathways, but sensitive to inhibitors of MEK1/2 and NF-kappaB activation, suggesting a MEK/NF-kappaB-based mechanism. These results suggest that IL-17 can coordinately up-regulate both hBD-2 and CCL20 expressions in airways through differentially JAK-dependent and -independent activations of NF-kappaB-based transcriptional mechanisms, respectively.  (+info)

Decreased migration of Langerhans precursor-like cells in response to human keratinocytes expressing human papillomavirus type 16 E6/E7 is related to reduced macrophage inflammatory protein-3alpha production. (78/275)

Infection with high-risk human papillomavirus (HPV) types, particularly types 16 and 18, contributes to 90% of cervical cancer cases. HPV infects cutaneous or mucosal epithelium, tissue that is monitored for microbial infection or damage by Langerhans cells. In lesions produced by HPV type 16, there is a reduction in numbers of immune cells, especially Langerhans cells. Langerhans precursor cells selectively express CCR6, the receptor for macrophage inflammatory protein 3alpha (MIP-3alpha), and function as potent immune responders to inflamed epithelium and initiators of the innate immune response. It has been reported that E6 and E7 of high-risk HPVs interfere with immune mediators in order to suppress the recruitment of immune cells and antiviral activities of infected cells. Here we show that, following proinflammatory stimulus, HPV-16 E6 and E7 inhibit MIP-3alpha transcription, resulting in suppression of the migration of immature Langerhans precursor-like cells. Interestingly, the E6 and E7 proteins from the low-risk HPV types also inhibited MIP-3alpha transcription. These results suggest that one mechanism by which HPV-infected cells suppress the immune response may be through the inhibition of a vital alert signal, thus contributing to the persistence of HPV infection.  (+info)

Giardia lamblia-induced changes in gene expression in differentiated Caco-2 human intestinal epithelial cells. (79/275)

The parasitic protozoan Giardia lamblia is a worldwide cause of diarrhea, but the mechanism of disease remains elusive. The parasite colonizes the small intestinal epithelium, known to be a sensor for the presence of enteric pathogens, without invading or causing severe inflammation. In this study we investigated the epithelial cell response to G. lamblia. Differentiated Caco-2 cells were infected with G. lamblia isolate WB-A11, and the transcriptome of the intestinal cells was analyzed after 1.5, 6, and 18 h of interaction, using oligonucleotide microarrays. A large number of genes displayed changed expression patterns, showing the complexity of the interaction between G. lamblia and intestinal cells. A novel chemokine profile (CCL2, CCL20, CXCL1, CXCL2, and CXCL3) was induced that was different from the response induced by enteric pathogens causing intestinal inflammation. Several genes involved in stress regulation changed their expression. These findings indicate that the intestinal epithelium senses the G. lamblia infection, and this is important for induction of innate and adaptive immunity. The induced stress response can be important in the pathogenesis.  (+info)

T cell-regulated neutrophilic inflammation in autoinflammatory diseases. (80/275)

Previous studies of acute generalized exanthematous pustulosis, a peculiar drug hypersensitivity reaction, suggested that CXCL8-producing T cells regulate sterile, polymorphonuclear neutrophil-rich skin inflammations. In this study, we test the hypothesis of whether CXCL8-producing T cells are present in autoinflammatory diseases like pustular psoriasis and Behcet's disease. Immunohistochemistry of normal skin revealed few CD4+ and CD8+ T cells, few CXCL8+ cells, and no neutrophilic infiltration, whereas in acute exacerbations of atopic dermatitis, numerous CD4+ T cells but few CD8+ T cells, neutrophils, or CXCL8+ cells were detected. In contrast, a pronounced infiltration of neutrophils and of predominantly CD4+ T cells was observed in skin biopsies from pustular psoriasis, Behcet's disease, and acute generalized exanthematous pustulosis, with infiltrating T cells strongly positive for CXCL8 and the chemokine receptor CCR6. Skin-derived T cell clones from pustular skin reactions were positive for CCR6 but negative for CCR8 and secreted high amounts of CXCL8 and GM-CSF, often together with IFN-gamma and TNF-alpha after in vitro stimulation. Moreover, some skin-derived T cell clones from Behcet's disease and from pustular psoriasis predominantly produced CXCL8 and GM-CSF, but failed to secrete IL-5 and IFN-gamma. These cells might represent a particular subset as they differ from both Th1 as well as Th2 T cells and are associated with a unique, neutrophil-rich sterile inflammation. Our findings suggest that CXCL8/GM-CSF-producing T cells may orchestrate neutrophil-rich pathologies of chronic autoinflammatory diseases like pustular psoriasis and Behcet's disease.  (+info)