Clinical review: Tokyo - protecting the health care worker during a chemical mass casualty event: an important issue of continuing relevance. (1/12)

Determine the effectiveness of decontamination, and perform thorough dry or wet decontamination, depending on the circumstances. Always remain cognizant of the fact that, even after decontamination has been completed, contamination may not have been completely eliminated. Perform periodic monitoring to determine whether secondary exposure has occurred in health care workers; if it appears that secondary exposure has occurred, then the PPE level must be increased and attempts must be made to identify and eliminate the source of the contamination. Finally, if the victims were exposed through ingestion, then consider the possibility that secondary exposure will occur during gastric lavage.  (+info)

Chemical-biological terrorism and its impact on children. (2/12)

Children remain potential victims of chemical or biological terrorism. In recent years, children have even been specific targets of terrorist acts. Consequently, it is necessary to address the needs that children would face after a terrorist incident. A broad range of public health initiatives have occurred since September 11, 2001. Although the needs of children have been addressed in many of them, in many cases, these initiatives have been inadequate in ensuring the protection of children. In addition, public health and health care system preparedness for terrorism has been broadened to the so-called all-hazards approach, in which response plans for terrorism are blended with plans for a public health or health care system response to unintentional disasters (eg, natural events such as earthquakes or pandemic flu or manmade catastrophes such as a hazardous-materials spill). In response to new principles and programs that have appeared over the last 5 years, this policy statement provides an update of the 2000 policy statement. The roles of both the pediatrician and public health agencies continue to be emphasized; only a coordinated effort by pediatricians and public health can ensure that the needs of children, including emergency protocols in schools or child care centers, decontamination protocols, and mental health interventions, will be successful.  (+info)

Emergency preparedness among people living near US army chemical weapons sites after September 11, 2001. (3/12)

We examined trust in the army and perceptions of emergency preparedness among residents living near the Anniston, Ala, and Richmond, Ky, US Army chemical weapons stockpile sites shortly after September 11, 2001. Residents (n = 655) living near the 2 sites who participated in a cross-sectional population were relatively unprepared in the event of a chemical emergency. The events of September 11 gave rise to concerns regarding the security of stored chemical weapons and the sites' vulnerability to terrorist attacks. Although residents expressed trust in the army to manage chemical weapons safely, only a few expressed a desire to actively participate in site decisions. Compliance with procedures during emergencies could be seriously limited, putting residents in these sites at higher levels of risk of exposure to chemical hazards than nonresidents.  (+info)

Bromine--the red cloud approaching. (4/12)

Bromine is a strong and prevalent irritating agent that can spread both as liquid and as fumes. It has a characteristic reddish-brown color. The mainstay of the medical management is supportive and symptomatic therapy that should be given as soon as possible to prevent further damage. Medical personnel, especially the emergency department staff, should be familiar with its health effects, including the safety precautions needed when caring for casualties following such an exposure.  (+info)

Osmium tetroxide: a new kind of weapon. (5/12)

OsO4 is a powerful oxidizer. It affects mainly the skin and mucous membranes. Although unsuitable for a large-scale terrorist attack, mainly due to its scarcity, it could be used in small-scale attacks. The small quantity contained in a vial would cause irritation to the eyes, nose, throat and skin. Combining the agent with an explosive material will probably destroy most of it, chemically. Thus, releasing the chemical without using explosives may be considerably more dangerous. Medical management is mainly symptomatic. As soon as the chemical enters the body, it rapidly reacts with the tissues in contact. Medical personnel should be aware of its poisonous effects and be equally familiar with the necessary self-protection measures and the treatment protocols.  (+info)

A rapid, cost-effective method for analyzing organophosphorus pesticide metabolites in human urine for counter-terrorism response. (6/12)

Organophosphorus (OP) pesticides are used as insecticides in agriculture and pest control and are often called "junior strength" nerve agents because they share the same mechanism of toxicity. OP pesticides are metabolized to dialkylphosphates and other metabolites, which are excreted in urine. In case of a terrorism incident involving widely available OP pesticides, an occurrence that may be likely given their widespread availability, a rapid, accurate, and cost-effective method for detecting exposure is required. We have evaluated several analytical methods to determine the most reliable and cost-effective methods for incident response. Our comparisons have included different internal standards (isotopically labeled standards versus chemically similar surrogate standards), different isolation techniques (some of which are automatable), and different analysis platforms. We found that isotopically labeled standards were a necessity to provide accurate quantification; the chemically similar surrogate was not suitable as an internal standard. The most sensitive and precise method uses isotopically labeled standards with gas chromatography-tandem mass spectrometry analysis. However, the most cost-effective method employed isotopically labeled standards with gas chromatography-single quadrupole-mass spectrometry using a less expensive mass selective detector. Because this method is lower in cost, it may be a more viable option for equipping multiple laboratories with chemical-terrorism response capabilities.  (+info)

Hydrazine--the space era agent. (7/12)

Hydrazine is considered a dangerous toxic compound. It is flammable, easily ignitable and may explode upon contact with different materials, including clothing. As a volatile liquid, it affects mainly the upper respiratory tract, mucous membranes and skin. The characteristics and availability of this agent warrant our attention. Medical personnel should be familiar with its properties, major health effects and the treatment needed. The key principles in treating hydrazine victims include protection from further exposure and aggressive antidotal treatment with pyridoxine (vitamin B6), as well as supportive treatment as required. Finally, medical teams should also be equipped with the proper protection measures (appropriate suits, gloves and breathing apparatuses) in order to avoid secondary exposure of themselves and others.  (+info)

Medical management of toxicological mass casualty events. (8/12)

The relative accessibility to various chemical agents, including chemical warfare agents and toxic industrial compounds, places a toxicological mass casualty event, including chemical terrorism, among the major threats to homeland security. TMCE represents a medical and logistic challenge with potential hazardous exposure of first-response teams. In addition, TMCE poses substantial psychological and economic impact. We have created a simple response algorithm that provides practical guidelines for participating forces in TMCE. Emphasis is placed on the role of first responders, highlighting the importance of early recognition of the event as a TMCE, informing the command and control centers, and application of appropriate self-protection. The medical identification of the toxidrome is of utmost importance as it may dictate radically different approaches and life-saving modalities. Our proposed emergency management of TMCE values the "Scoop & Run" approach orchestrated by an organized evacuation plan rather than on-site decontamination. Finally, continuous preparedness of health systems - exemplified by periodic CBRN (Chemical, Biological, Radio-Nuclear) medical training of both first responders and hospital staff, mandatory placement of antidotal auto-injectors in all ambulances and CBRN emergency kits in the emergency departments - would considerably improve the emergency medical response to TMCE.  (+info)