Reversal of cardiac complications by deferiprone and deferoxamine combination therapy in a patient affected by a severe type of juvenile hemochromatosis (JH). (41/159)

Juvenile hemochromatosis (JH) is a rare autosomal recessive disorder of iron metabolism, genetically heterogeneous. In JH, symptomatic organ involvement occurs as early as the second decade of life. Heart failure and/or arrhythmias are the most frequent causes of death. Phlebotomy is the safest, most effective, and most economic therapeutic approach in hemochromatosis patients but is not indicated during the treatment of severe congestive heart failure with unstable hemodynamic status. The treatment of iron overload in these prohibitive clinical situations has to be carried out using iron chelators. We report a case of heart failure in the setting of unrecognized juvenile hemochromatosis successfully treated by the simultaneous administration of deferoxamine and deferiprone. To our knowledge, this is the first patient affected by JH treated with combined chelation regimen.  (+info)

A class of iron chelators with a wide spectrum of potent antitumor activity that overcomes resistance to chemotherapeutics. (42/159)

Novel chemotherapeutics with marked and selective antitumor activity are essential to develop, particularly those that can overcome resistance to established therapies. Iron (Fe) is critical for cell-cycle progression and DNA synthesis and potentially represents a novel molecular target for the design of new anticancer agents. The aim of this study was to evaluate the antitumor activity and Fe chelation efficacy of a new class of Fe chelators using human tumors. In this investigation, the ligands showed broad antitumor activity and could overcome resistance to established antitumor agents. The in vivo efficacy of the most effective chelator identified, di-2-pyridylketone-4,4,-dimethyl-3-thiosemicarbazone (Dp44mT), was assessed by using a panel of human xenografts in nude mice. After 7 weeks, net growth of a melanoma xenograft in Dp44mT-treated mice was only 8% of that in mice treated with vehicle. In addition, no differences in these latter animals were found in hematological indices between Dp44mT-treated mice and controls. No marked systemic Fe depletion was observed comparing Dp44mT- and vehicle-treated mice, probably because of the very low doses required to induce anticancer activity. Dp44mT caused up-regulation of the Fe-responsive tumor growth and metastasis suppressor Ndrg1 in the tumor but not in the liver, indicating a potential mechanism of selective anticancer activity. These results indicate that the novel Fe chelators have potent and broad antitumor activity and can overcome resistance to established chemotherapeutics because of their unique mechanism of action.  (+info)

The impact of iron overload and its treatment on quality of life: results from a literature review. (43/159)

BACKGROUND: To assess the literature for the impact of iron overload and infusion Iron Chelation Therapy (ICT) on patients' quality of life (QoL), and the availability of QoL instruments for patients undergoing infusion ICT. Also, to obtain patients' experiences of having iron overload and receiving infusion ICT, and experts' clinical opinions about the impact of treatment on patients' lives. METHODS: A search of studies published between 1966 and 2004 was conducted using Medline and the Health Economic Evaluation Database (HEED). Qualitative results from patient and expert interviews were analysed. Hand searching of relevant conference abstracts completed the search. RESULTS: Few studies measuring the impact of ICT with deferoxamine (DFO) on patients QoL were located (n = 15). QoL domains affected included: depression; fatigue; dyspnoea; physical functioning; psychological distress; decrease in QoL during hospitalization. One theme in all articles was that oral ICT should improve QoL. No iron overload or ICT-specific QoL instruments were located in the articles. Interviews revealed that the impact of ICT on patients with thalassemia, sickle cell disease, and myelodysplastic syndromes is high. CONCLUSION: A limited number of studies assessed the impact of ICT or iron overload on QoL. All literature suggested a need for easily administered, efficacious and well tolerated oral iron overload treatments, given the impact of current ICT on adherence. Poor adherence to ICT was documented to negatively impact survival. Further research is warranted to continue the qualitative and quantitative study of QoL using validated instruments in patients receiving ICT to further understanding the issues and improve patients QoL.  (+info)

A randomised comparison of deferasirox versus deferoxamine for the treatment of transfusional iron overload in sickle cell disease. (44/159)

Deferasirox is a once-daily, oral iron chelator developed for treating transfusional iron overload. Preclinical studies indicated that the kidney was a potential target organ of toxicity. As patients with sickle cell disease often have abnormal baseline renal function, the primary objective of this randomised, open-label, phase II trial was to evaluate the safety and tolerability of deferasirox in comparison with deferoxamine in this population. Assessment of efficacy, as measured by change in liver iron concentration (LIC) using biosusceptometry, was a secondary objective. A total of 195 adult and paediatric patients received deferasirox (n = 132) or deferoxamine (n = 63). Adverse events most commonly associated with deferasirox were mild, including transient nausea, vomiting, diarrhoea, abdominal pain and skin rash. Abnormal laboratory studies with deferasirox were occasionally associated with mild non-progressive increases in serum creatinine and reversible elevations in liver function tests. Discontinuation rates from deferasirox (11.4%) and deferoxamine (11.1%) were similar. Over 1 year, similar dose-dependent LIC reductions were observed with deferasirox and deferoxamine. Once-daily oral deferasirox has acceptable tolerability and appears to have similar efficacy to deferoxamine in reducing iron burden in transfused patients with sickle cell disease.  (+info)

A randomized, placebo-controlled, double-blind trial of the effect of combined therapy with deferoxamine and deferiprone on myocardial iron in thalassemia major using cardiovascular magnetic resonance. (45/159)

BACKGROUND: Cardiac complications secondary to iron overload are the leading cause of death in beta-thalassemia major. Approximately two thirds of patients maintained on the parenteral iron chelator deferoxamine have myocardial iron loading. The oral iron chelator deferiprone has been demonstrated to remove myocardial iron, and it has been proposed that in combination with deferoxamine it may have additional effect. METHODS AND RESULTS: Myocardial iron loading was assessed with the use of myocardial T2* cardiovascular magnetic resonance in 167 patients with thalassemia major receiving standard maintenance chelation monotherapy with subcutaneous deferoxamine. Of these patients, 65 with mild to moderate myocardial iron loading (T2* 8 to 20 ms) entered the trial with continuation of subcutaneous deferoxamine and were randomized to receive additional oral placebo (deferoxamine group) or oral deferiprone 75 mg/kg per day (combined group). The primary end point was the change in myocardial T2* over 12 months. Secondary end points of endothelial function (flow-mediated dilatation of the brachial artery) and cardiac function were also measured with cardiovascular magnetic resonance. There were significant improvements in the combined treatment group compared with the deferoxamine group in myocardial T2* (ratio of change in geometric means 1.50 versus 1.24; P=0.02), absolute left ventricular ejection fraction (2.6% versus 0.6%; P=0.05), and absolute endothelial function (8.8% versus 3.3%; P=0.02). There was also a significantly greater improvement in serum ferritin in the combined group (-976 versus -233 microg/L; P<0.001). CONCLUSIONS: In comparison to the standard chelation monotherapy of deferoxamine, combination treatment with additional deferiprone reduced myocardial iron and improved the ejection fraction and endothelial function in thalassemia major patients with mild to moderate cardiac iron loading.  (+info)

Succimer chelation improves learning, attention, and arousal regulation in lead-exposed rats but produces lasting cognitive impairment in the absence of lead exposure. (46/159)

BACKGROUND: There is growing pressure for clinicians to prescribe chelation therapy at only slightly elevated blood lead levels. However, very few studies have evaluated whether chelation improves cognitive outcomes in Pb-exposed children, or whether these agents have adverse effects that may affect brain development in the absence of Pb exposure. OBJECTIVES: The present study was designed to answer these questions, using a rodent model of early childhood Pb exposure and treatment with succimer, a widely used chelating agent for the treatment of Pb poisoning. RESULTS: Pb exposure produced lasting impairments in learning, attention, inhibitory control, and arousal regulation, paralleling the areas of dysfunction seen in Pb-exposed children. Succimer treatment of the Pb-exposed rats significantly improved learning, attention, and arousal regulation, although the efficacy of the treatment varied as a function of the Pb exposure level and the specific functional deficit. In contrast, succimer treatment of rats not previously exposed to Pb produced lasting and pervasive cognitive and affective dysfunction comparable in magnitude to that produced by the higher Pb exposure regimen. CONCLUSIONS: These are the first data, to our knowledge, to show that treatment with any chelating agent can alleviate cognitive deficits due to Pb exposure. These findings suggest that it may be possible to identify a succimer treatment protocol that improves cognitive outcomes in Pb-exposed children. However, they also suggest that succimer treatment should be strongly discouraged for children who do not have elevated tissue levels of Pb or other heavy metals.  (+info)

Recommendations for medical management of adult lead exposure. (47/159)

Research conducted in recent years has increased public health concern about the toxicity of lead at low dose and has supported a reappraisal of the levels of lead exposure that may be safely tolerated in the workplace. In this article, which appears as part of a mini-monograph on adult lead exposure, we summarize a body of published literature that establishes the potential for hypertension, effects on renal function, cognitive dysfunction, and adverse female reproductive outcome in adults with whole-blood lead concentrations < 40 microg/dL. Based on this literature, and our collective experience in evaluating lead-exposed adults, we recommend that individuals be removed from occupational lead exposure if a single blood lead concentration exceeds 30 microg/dL or if two successive blood lead concentrations measured over a 4-week interval are > or = 20 microg/dL. Removal of individuals from lead exposure should be considered to avoid long-term risk to health if exposure control measures over an extended period do not decrease blood lead concentrations to < 10 microg/dL or if selected medical conditions exist that would increase the risk of continued exposure. Recommended medical surveillance for all lead-exposed workers should include quarterly blood lead measurements for individuals with blood lead concentrations between 10 and 19 microg/dL, and semiannual blood lead measurements when sustained blood lead concentrations are < 10 microg/dL. It is advisable for pregnant women to avoid occupational or avocational lead exposure that would result in blood lead concentrations > 5 microg/dL. Chelation may have an adjunctive role in the medical management of highly exposed adults with symptomatic lead intoxication but is not recommended for asymptomatic individuals with low blood lead concentrations.  (+info)

Liver iron concentrations and urinary hepcidin in beta-thalassemia. (48/159)

BACKGROUND AND OBJECTIVES: Patients with beta-thalassemia, like those with genetic hemochromatosis, develop iron overload due to increased iron absorption, and their iron burden is further exacerbated by transfusion therapy. Hepcidin, a hepatic hormone, regulates systemic iron homeostasis by inhibiting the absorption of iron from the diet and the recycling of iron by macrophages. In turn, hepcidin release is increased by iron loading and inhibited by erythropoietic activity. Hepcidin deficiency is the cause of iron overload in most forms of hereditary hemochromatosis. We sought to determine hepcidin's role in the pathogenesis of iron overload in b-thalassemia. DESIGN AND METHODS: We assessed the degree of iron overload in thalassemia intermedia and major patients by measuring hepatic iron concentration in liver biopsy samples and serum ferritin, estimated erythropoietic drive by assaying soluble transferrin receptor and serum erythropoietin levels and correlated these with urinary hepcidin measurements. RESULTS: Urinary hepcidin levels in beta-thalassemia demonstrate severe hepcidin deficiency in thalassemia intermedia. There was a strong inverse relationship between urinary hepcidin levels and both erythropoietin and soluble transferrin receptor, markers of erythropoietic activity. In contrast, hepcidin levels were elevated in thalassemia major, presumably due to transfusions that reduce erythropoietic drive and deliver a large iron load. Despite similar liver iron concentrations in the two conditions, serum ferritin was much lower in thalassemia intermedia. INTERPRETATION AND CONCLUSIONS: In thalassemia intermedia, high erythropoietic drive causes severe hepcidin deficiency. The lack of hepcidin results in hyperabsorption of dietary iron, but also in iron depletion of macrophages, lowering their secretion of ferritin and, consequently, serum ferritin levels. In contrast, in thalassemia major, transfusions decrease erythropoietic drive and increase the iron load, resulting in relatively higher hepcidin levels. In the presence of higher hepcidin levels, dietary iron absorption is moderated and macrophages retain iron, contributing to higher serum ferritin. In the future, hepcidin measurements may allow a more accurate assessment of the degree of iron overload and the maldistribution of iron in thalassemia.  (+info)