Cell-wall-bound proteinase of Lactobacillus delbrueckii subsp. lactis ACA-DC 178: characterization and specificity for beta-casein. (1/433)

Lactobacillus delbrueckii subsp. lactis ACA-DC 178, which was isolated from Greek Kasseri cheese, produces a cell-wall-bound proteinase. The proteinase was removed from the cell envelope by washing the cells with a Ca2+-free buffer. The crude proteinase extract shows its highest activity at pH 6.0 and 40 degrees C. It is inhibited by phenylmethylsulfonyl fluoride, showing that the enzyme is a serine-type proteinase. Considering the substrate specificity, the enzyme is similar to the lactococcal PI-type proteinases, since it hydrolyzes beta-casein mainly and alpha- and kappa-caseins to a much lesser extent. The cell-wall-bound proteinase from L. delbrueckii subsp. lactis ACA-DC 178 liberates four main peptides from beta-casein, which have been identified.  (+info)

High-level production of heterologous protein by engineered yeasts grown in cottage cheese whey. (2/433)

Cottage cheese whey is a cheese industry by-product still rich in proteins and lactose. Its recycling is seldom cost-effective. In this work we show that the lactose-utilizing yeast Kluyveromyces lactis, engineered for production of recombinant human lysozyme, can be grown in cottage cheese whey, resulting in high-level production of the heterologous protein (125 microg/ml).  (+info)

Phenotypic and genotypic characterization of non-starter lactic acid bacteria in mature cheddar cheese. (3/433)

Non-starter lactic acid bacteria were isolated from 14 premium-quality and 3 sensorially defective mature Irish Cheddar cheeses, obtained from six manufacturers. From countable plates of Lactobacillus-selective agar, 20 single isolated colonies were randomly picked per cheese. All 331 viable isolates were biochemically characterized as mesophilic (i.e., group II) Lactobacillus spp. Phenotypically, the isolates comprised 96.4% L. paracasei, 2.1% L. plantarum, 0.3% L. curvatus, 0.3% L. brevis, and 0.9% unidentified species. Randomly amplified polymorphic DNA (RAPD) analysis was used to rapidly identify the dominant strain groups in nine cheeses from three of the factories, and through clustering by the unweighted pair group method with arithmetic averages, an average of seven strains were found per cheese. In general, strains isolated from cheese produced at the same factory clustered together. The majority of isolates associated with premium-quality cheese grouped together and apart from clusters of strains from defective-quality cheese. No correlation was found between the isomer of lactate produced and RAPD profiles, although isolates which did not ferment ribose clustered together. The phenotypic and genotypic methods employed were validated with a selection of 31 type and reference strains of mesophilic Lactobacillus spp. commonly found in Cheddar cheese. RAPD analysis was found to be a useful and rapid method for identifying isolates to the species level. The low homology exhibited between RAPD banding profiles for cheese isolates and collection strains demonstrated the heterogeneity of the L. paracasei complex.  (+info)

The Abuela Project: safe cheese workshops to reduce the incidence of Salmonella typhimurium from consumption of raw-milk fresh cheese. (4/433)

OBJECTIVES: A multiagency intervention was implemented in Yakima County, Wash, to reduce the incidence of Salmonella serotype Typhimurium infections resulting from eating queso fresco (fresh cheese) made from raw milk, a traditional food in the Hispanic diet. METHODS: A pasteurized-milk queso fresco recipe with taste and texture acceptable to the Hispanic community was developed. Trained Hispanic volunteers conducted safe cheese workshops, which were attended by more than 225 persons. RESULTS: Workshop participants' acceptance of the new recipe was excellent and positive behavior changes were maintained over 6 months. CONCLUSIONS: Educational interventions in Hispanic communities can reduce the incidence of Salmonella Typhimurium associated with eating queso fresco.  (+info)

Registered designation of origin areas of fermented food products defined by microbial phenotypes and artificial neural networks. (5/433)

Cheese produced from raw ewes' milk and chourico, a Portuguese dry fermented sausage, are still produced in a traditional way in certain regions of Portugal by relying on colonization by microbial populations associated with the raw materials, equipment, and local environments. For the purpose of describing the product origins and types of these fermented foods, metabolic phenotypes can be used as descriptors of the product as well as to determine the presence of compounds with organoleptic value. The application of artificial neural networks to the metabolic profiles of bacterial isolates was assayed and allowed the separation of products from different regions. This method could then be used for the Registered Designation of Origin certification process of food products. Therefore, besides test panel results for these traditionally produced food products, another tool for validating products for the marketplace is available to the producers. The method can be improved for the detection of counterfeit products.  (+info)

Characterization of the oligosaccharides assembled on the Pichia pastoris-expressed recombinant aspartic protease. (6/433)

Aspartic protease, widely used as a milk-coagulating agent in industrial cheese production, contains three potential N-glycosylation sites. In this study, we report the characterization of N-linked oligosaccharides on recombinant aspartic protease secreted from the methylotrophic yeast Pichia pastoris using a combination of mass spectrometric, 2D chromatographic, chemical and enzymatic methods. The carbohydrates from site I (Asn79) were found to range from Man6-17GlcNAc2 with 50% bearing a phospho-diester-motif, site II (Asn113) was not occupied and site III (Asn188) contained mostly uncharged species ranging from Man-13GlcNAc2. These charged groups are not affecting the transport through the secretion pathway of the recombinant glycoprotein. Changes from a molasses-based medium to a minimal salts-based medium led to a clear reduction of the degree of phosphorylation of the N-glycan population.  (+info)

PCR amplification of the gene acmA differentiates Lactococcus lactis subsp. lactis and L. lactis subsp. cremoris. (7/433)

The occurrence of the acmA gene, encoding the lactococcal N-acetylmuramidase in new lactococcal isolates from raw milk cheeses, has been determined. Isolates were genotypically identified to the subspecies level with a PCR technique. On the basis of PCR amplification of the acmA gene, the presence or absence of an additional amplicon of approximately 700 bp correlated with Lactococcus lactis subspecies. L. lactis subsp. lactis exhibits both the expected 1,131-bp product and the additional amplicon, whereas L. lactis subsp. cremoris exhibits a single 1,131-bp fragment.  (+info)

Production of sulfur flavors by ten strains of Geotrichum candidum. (8/433)

Ten strains of Geotrichum candidum were studied on a liquid cheese model medium for the production of sulfur compounds which contribute to the aroma of cheeses. The volatile components produced by each cultured strain were extracted by dynamic headspace extractions, separated and quantified by gas chromatography (GC), and identified by GC-mass spectrometry. It was shown that four strains of this microorganism produced significant quantities of S-methyl thioacetate, S-methyl thiopropionate, S-methyl thiobutanoate, S-methyl thioisobutanoate, S-methyl thioisovalerate, and S-methyl thiohexanoate. This is the first example of the production of these compounds by a fungus. In addition, dimethyldisulfide, dimethyltrisulfide, dimethylsulfide, and methanethiol, which are more commonly associated with the development of cheese flavor in bacterial cultures, were also produced by G. candidum in various yields, depending on the strain selected. The potential application of these strains in cultured microbial associations to produce modified cheeses with more desirable organoleptic properties is discussed.  (+info)